• 제목/요약/키워드: Genetic Algorithms(GAs)

검색결과 242건 처리시간 0.028초

분산 복합유전알고리즘을 이용한 구조최적화 (Distributed Hybrid Genetic Algorithms for Structural Optimization)

  • 우병헌;박효선
    • 한국전산구조공학회논문집
    • /
    • 제16권4호
    • /
    • pp.407-417
    • /
    • 2003
  • 최근 구조최적화분야에서 활발하게 사용되고 있는 유전알고리즘은 해집단을 운용하기 때문에, 많은 반복수와 적응도 평가를 위하여 해집단의 수에 해당하는 구조해석을 필요로 하며, 또한 교배율과 돌연변이율 등의 파라미터에 따라 알고리즘의 성능이 변화하므로 문제에, 따라 적합한 파라미터 설정이 필요한 근본적인 단점을 지니고 있다. 본 연구에서는 기존 유전알고리즘의 단점을 극복할 수 있는 복합유전알고리즘을 마이크로유전알고리즘과 단순유전알고리즘을 결합한 형식으로 그리고, 최적화에 요구되는 연산을 다수의 개인용 컴퓨터에서 동시에 분산하여 수행할 수 있는 고성능 분산 복합유전알고리즘으로 개발하였다. 개발된 알고리즘은 철골 가새골조 구조물의 최소중량설계에 적용하여 그 성능을 평가하였다.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

유전알고리즘을 이용한 액체로켓엔진 설계 최적화 (Design Optimization of Liquid Rocket Engine Using Genetic Algorithms)

  • 이상복;임태규;노태성
    • 한국추진공학회지
    • /
    • 제16권2호
    • /
    • pp.25-33
    • /
    • 2012
  • 유전알고리즘을 사용하여 액체로켓엔진의 연소실 압력과 노즐 확장비, O/F 비 등 주요 설계변수를 최적화하였다. 대상엔진은 LO2/RP-1을 추진제로 사용하는 개방형 가스발생기 사이클을 대상으로 하였다. 연소실의 물성치는 CEA2를 이용하였으며, 무게 산출은 참고문헌을 바탕으로 모델링 하였다. 최적 설계의 목적함수는 비추력과 추력중량비를 다중목표로 설정하여 가중치 방법을 사용하였다. 유전알고리즘을 최적화 과정을 거친 결과 비추력은 최대 4%, 추력중량비는 최대 23% 정도 증가하였다. 또한 다양한 추력에 대해서 Pareto frontier line을 얻었다.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

A Design of Dynamically Simultaneous Search GA-based Fuzzy Neural Networks: Comparative Analysis and Interpretation

  • Park, Byoung-Jun;Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.621-632
    • /
    • 2013
  • In this paper, we introduce advanced architectures of genetically-oriented Fuzzy Neural Networks (FNNs) based on fuzzy set and fuzzy relation and discuss a comprehensive design methodology. The proposed FNNs are based on 'if-then' rule-based networks with the extended structure of the premise and the consequence parts of the fuzzy rules. We consider two types of the FNNs topologies, called here FSNN and FRNN, depending upon the usage of inputs in the premise of fuzzy rules. Three different type of polynomials function (namely, constant, linear, and quadratic) are used to construct the consequence of the rules. In order to improve the accuracy of FNNs, the structure and the parameters are optimized by making use of genetic algorithms (GAs). We enhance the search capabilities of the GAs by introducing the dynamic variants of genetic optimization. It fully exploits the processing capabilities of the FNNs by supporting their structural and parametric optimization. To evaluate the performance of the proposed FNNs, we exploit a suite of several representative numerical examples and its experimental results are compared with those reported in the previous studies.

직렬콘덴서를 이용한 송전용량증대를 위한 유전알고리즘 응용 (An Application of Genetic Algorithm to increase Transfer Capacity using Series Capacitor)

  • 유석구;김규호;이경훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.485-487
    • /
    • 1995
  • This paper proposes a GAs-applied method for power system planning using series capacitors in order to control the flow of power as desired and utilize the existing transmission facilities to its transfer capacity limits. The control strategy problem is formulated as optimization problem. Also, in employing genetic algorithms to solve the optimization problems, real variable-based genetic algorithm is presented to save the coding processing time and obtain more accurate value of the variable. An application to IEEE 57-bus test system proves that the proposed method is effective for improvement of power system transfer capacity.

  • PDF

Efficient Task Offloading Decision Based on Task Size Prediction Model and Genetic Algorithm

  • Quan T. Ngo;Dat Van Anh Duong;Seokhoon Yoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.16-26
    • /
    • 2024
  • Mobile edge computing (MEC) plays a crucial role in improving the performance of resource-constrained mobile devices by offloading computation-intensive tasks to nearby edge servers. However, existing methods often neglect the critical consideration of future task requirements when making offloading decisions. In this paper, we propose an innovative approach that addresses this limitation. Our method leverages recurrent neural networks (RNNs) to predict task sizes for future time slots. Incorporating this predictive capability enables more informed offloading decisions that account for upcoming computational demands. We employ genetic algorithms (GAs) to fine-tune fitness functions for current and future time slots to optimize offloading decisions. Our objective is twofold: minimizing total processing time and reducing energy consumption. By considering future task requirements, our approach achieves more efficient resource utilization. We validate our method using a real-world dataset from Google-cluster. Experimental results demonstrate that our proposed approach outperforms baseline methods, highlighting its effectiveness in MEC systems.

유전자 알고리즘 기반 최적 다항식 뉴럴네트워크 연구 및 비선형 공정으로의 응용 (A Study on GA-based Optimized Polynomial Neural Networks and Its Application to Nonlinear Process)

  • 김완수;이인태;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.846-851
    • /
    • 2005
  • 본 논문은 최적 탐색 알고리즘인 유전자 알고리즘을 이용하여 다항식 뉴럴네트워크(Polynomial Neural Networks : PNN)의 최적 설계가 그 목적이다. 기존의 다항식 뉴럴네트워크는 확장된 GMDH(Group Method of Data Handling) 방법에 기반을 두며, 네트워크의 성장과정을 통하여 각 층의 다항식뉴런(혹은 노드)에서 고정된 (설계자에 의해 미리 선택된) 노드 입력들의 수뿐만 아니라 다항식 차수(1차, 2차, 그리고 수정된 2차식)를 이용하였다. 더구나, 그 방법은 학습을 통해 생성된 PNN이 최적 네트워크 구조를 가진다는 것을 보증하지 못한다. 그러나, 제안된 GA-based PNN 모델은 다음의 파라미터들- 즉 입력변수의 수, 입력변수, 및 다항식 차수-을 유전자 알고리즘을 이용하여 선택 동조함으로써 그 구조를 구조적으로 더 최적화된 네트워크가 되도록 하고, 기존의 PNN보다 훨씬 더 유연하고, 선호된 뉴럴 네트워크가 되도록 한다. 하중계수를 가진 합성성능지수가 그 모델의 근사화 및 일반화(예측) 능력 사이의 상호 균형을 얻기 위해 제안된다. GA-based PNN의 성능을 평가하기 위해 그 모델은 가스 터빈 발전소의 NOx 배출 공정 데이터로 실험된다. 비교해석은 제안된 GA-based PNN이 앞서 나타난 다른 지능모델보다 더 우수한 예측능력뿐만 아니라 높은 정확성을 가진 모델임을 보인다.

배전계통 사고시 부하절체 방법의 GA 적용에 관한 연구 (The Application of Load Re-configuration Using Genetic Algorithm for the Distribute Systems Mischance)

  • 최대섭;신호철
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.115-123
    • /
    • 2011
  • 본 논문에서는 배전 손실 최소화 문제에 있어서 GA의 수렴특성을 개선하기 위해서는 새로운 수명의 개념을 도입한다. 즉 개체군의 균질화와 유전적 부동의 문제에 대해서 연령을 가진 집단에 유한의 수명을 부여하여 적응도에 의한 도태외에 어느수명에 도달한 경우에도 도태시키려는 방법을 제안하였다. 이 방법은 적응도가 가장 높은 개체는 개체수의 양, 엘리트 보존전략의 영향에 의해 자손을 남기는 확률이 높은 것인데 비해 적응도가 낮은 개체는 수명에 의해 빨리 도태되고 또한 수렴성의 향상을 기대할 수 있다. 게다가 수명을 고려한 볼수 법과 이미 제안되어 있는 DPM을 조합하여 이하와 같은 특징을 가진 GA의 탐색알고리즘을 개발한다.

Breast Cytology Diagnosis using a Hybrid Case-based Reasoning and Genetic Algorithms Approach

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.389-398
    • /
    • 2007
  • Case-based reasoning (CBR) is one of the most popular prediction techniques for medical diagnosis because it is easy to apply, has no possibility of overfitting, and provides a good explanation for the output. However, it has a critical limitation - its prediction performance is generally lower than other artificial intelligence techniques like artificial neural networks (ANNs). In order to obtain accurate results from CBR, effective retrieval and matching of useful prior cases for the problem is essential, but it is still a controversial issue to design a good matching and retrieval mechanism for CBR systems. In this study, we propose a novel approach to enhance the prediction performance of CBR. Our suggestion is the simultaneous optimization of feature weights, instance selection, and the number of neighbors that combine using genetic algorithms (GAs). Our model improves the prediction performance in three ways - (1) measuring similarity between cases more accurately by considering relative importance of each feature, (2) eliminating redundant or erroneous reference cases, and (3) combining several similar cases represent significant patterns. To validate the usefulness of our model, this study applied it to a real-world case for evaluating cytological features derived directly from a digital scan of breast fine needle aspirate (FNA) slides. Experimental results showed that the prediction accuracy of conventional CBR may be improved significantly by using our model. We also found that our proposed model outperformed all the other optimized models for CBR using GA.

  • PDF