• Title/Summary/Keyword: Generator stator windings

Search Result 106, Processing Time 0.028 seconds

Assessment of Insulation Condition in Gas Turbine Generator Stator Windings (가스터빈 발전기 고정자 권선의 절연상태 평가)

  • Kim, Hee-Dong;Yang, Gyu-Hyun;Ju, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1423-1428
    • /
    • 2010
  • The results of off-line and on-line diagnostic tests performed on the stator winding of an air-cooled gas turbine(G/T) generator are reported in this paper. Off-line diagnostic tests included measurements of the ac current, dissipation factor(tan${\delta}$), and partial discharge(PD). Six epoxy-mica capacitors were installed in the three phases of G/T generator for performing on-line diagnostic testing with the turbine generator analyzer(TGA). The TGA showed that the normalized quantity number(NQN) and the PD magnitude($Q_m$) were high in phase A of the stator winding. Internal discharges were generated in phases B and C, and slot discharge occurred in phase A. According to the trend analyses of the NQN and $Q_m$ values available for insulation condition assessment for G/T generator stator windings, it was concluded that phases B and C were in good condition, whereas phase A has been significantly deteriorated.

Experimental Study on Prediction and Diagnosis of Leakage and Water Absorption in Water-Cooled Generator Stator Windings by Drying Process Analysis (수냉각 발전기 고정자 권선의 건조 과정 분석을 통한 누설 및 흡습 예측 진단에 관한 실험적 연구)

  • Kim, Hee-Soo;Bae, Yong-Chae;Lee, Wook-Ryun;Lee, Doo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.867-873
    • /
    • 2010
  • The failure of water-cooled generator stator windings as a result of insulation breakdown due to coolant water leaks and water absorption often occurs worldwide. Such failure can cause severe grid-related accidents as well as huge economic losses. More than 50% of domestic generators have been operated for over 15 years, and therefore, they exhibit signs of aging. Leaking and water-absorbing windings are often found during an overhaul. In an existing method for evaluating the integrity of generator stator windings, the drying process of the interior of the windings is ignored and only final leak tests are performed. In this study, it is shown that water leaks and water absorption in stator windings can be detected indirectly through vacuum pattern analysis in the vacuum drying mode, which is the used in the preparation stage of the leak test.

An Experimental Study on Water Absorbtion Characteristics of Generator Stator Bar Insulation by Cooling Water Temperature in 500MW Capacity Power Plant (500MW급 화력 발전기 냉각수 온도에 따른 고정자 권선 절연재의 흡습 특성에 관한 실험적 연구)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Doo-Young;Lee, Wook-Ryun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1392-1397
    • /
    • 2008
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. De-mineralized water is used to cool stator bars during the normal operation of generator in large power plants because the water cooled method has highest cooling efficient. Water absorption of bar insulation is progressed by several causes such as generation of water leak path by corrosion, delamination of insulation by vibration, and inadequate water treatment, etc.. Reliable water absorption diagnostics of generator stator bar is important to ensure the availability of power plant and to reduce maintenance cost by generator accident. It is described that the water absorption characteristics for generator stator bar insulation used in 500MW capacity standard fossil power plant by cooling water temperature. It is verified that the management of stator cooling water temperature is one of the important factors to decrease water absorption rate of generator stator bars.

The Assessment on the Insulation Condition of Generator Stator Windings by a Novel Parameter PDI(Partial Discharge Index) (새로운 파라메타인 부분방전 변화지수에 의한 발전기 고정자 권선의 절연상태 평가)

  • Hwang, Don-Ha;Park, Do-Yeong;Kim, Yong-Ju;Kim, Jin-Bong;Ju, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.11
    • /
    • pp.735-741
    • /
    • 1999
  • The monitoring and assessment on the insulation condition of generator stator windings have been an important task of utility companies. The interest for the assessment of insulation condition has been increasing due to the need to keep old generating equipment reliable in order to extend the equipment life and to increase the generating capacity. Even though many developments and research activities for the condition assessment of generator insulation have been performed for decades, the assessment criterion in order to consistently predict the actual insulation condition is still in question. In this paper, the correlation between the parameters and the insulation condition is analyzed through the various non-destructive diagnostic tests in order to establish the assessment criterion on insulation deterioration of generator stator windings. By analyzing the correlation, PDI(Partial Discharge Index) as a novel parameter for the assessment criterion on insulation diagnosis of stator winding is proposed and verified.

  • PDF

Evaluation of On-Line Partial Discharge Measurement Techniques on Hydro-Generator (수력 발전기의 운전중 부분방전 측정기법에 대한 신뢰성 평가)

  • Hwang, D.H.;Kim, J.B.;Kim, Y.J.;Park, M.S.;Kim, T.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1526-1529
    • /
    • 1994
  • In hydro-generator, a groundwall insulation of stator windings gradually deteriorates due to mechanical, thermal, electrical and environmental stresses. These stresses combine to result in loose windings, delamination of the stator insulation and/or electrical tracking of the end winding, all of which can lead to stator insulation failures. Conventionally, off-line tests such as partial discharge measurement, DC/AC current test and ${\Delta}tan{\delta}$ test has been used for estimation of winding condition. However, off-line test requires large power supply and generator outage. In addition, major cause of insulation problems such as loose wedges and slot discharges may not be found with off-line diagnoses. This paper describes the on-line partial discharge measurement techniques in the generator stator windings. The experimental results from the UIAM #1 hydro-generator confirms a optimistic application of on-line generator diagnosis method as a reliable tool for evaluation of winding condition.

  • PDF

A Study on the Water Absorption Test of Generator Stator Windings Using Probability Distributions (여러 가지 확률분포를 이용한 발전기 고정자 권선의 흡습 시험에 관한 연구)

  • Kim, Hee-Soo;Bae, Y.C.;Kim, Hee-Jeong;Na, Myung-Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.961-969
    • /
    • 2009
  • Water absorption in water-cooled generator stator windings can cause serious accidents such as insulation breakdown and it brings a generator to the unexpected sudden outage. Accordingly, it is important to diagnose the water absorption of them in the effective operation of power plant. Especially, the capacitance value which is measured for diagnosis is very small so the special diagnosis methods like stochastic theory are needed. KEPRI developed the water absorption test equipment and diagnosis technology for them. In this paper we propose that water absorption test of generator stator windings using probability distributions. The proposed diagnosis technology is applied to the real system and the results of water absorption test for stator windings are agreed to them of water leak test.

Analysis of Insulation Quality in Large Generator Stator Windings

  • Kim, Hee-Dong;Kong, Tae-Sik;Ju, Young-Ho;Kim, Byong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.384-390
    • /
    • 2011
  • To evaluate the condition of stator winding insulation in generators that have been operated for a long period of time, diagnostic tests were performed on the stator bars of a 500 MW, 22 kV generator under accelerated thermal and electrical aging procedures. The tests included measurements of AC current (${\Delta}I$), dissipation factor ($tan{\delta}$), partial discharge (PD) magnitude, and capacitance (C). In addition, the AC current test was performed on the stator winding of a 350 MW, 24 kV generator under operation to confirm insulation deterioration. The values of ${\Delta}I$, ${\Delta}tan{\delta}$, and PD magnitude in one stator bar indicated serious insulation deterioration. In another stator bar, the ${\Delta}I$ measurements showed that the insulation was in good condition, whereas the values of ${\Delta}tan{\delta}$ and PD magnitude indicated an incipient stage of insulation deterioration. Measurements of ${\Delta}I$ and PD magnitude in all three phases (A, B, C) of the remaining generator stator windings showed that they were in good condition, although the ${\Delta}tan{\delta}$ measurements suggested that the condition of the insulation should be monitored carefully. Overall analysis of the results suggested that the generator stator windings were in good condition. The patterns of PD magnitude in all three phases (A, B, C) were attributed to internal discharge.

Microstructure Analysis of Large Turbine Generator Stator Insulations (대형 터빈발전기 고정자 권선의 미세구조 분석)

  • Kim, Hee-Dong;Ju, Young-Ho;Song, Seong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1452-1454
    • /
    • 2002
  • Large turbine generator(rated 22kV) has failed in the stator winding area during normal operation. The capacitance and tan${\delta}$ were measured by Schering bridge in the zone 1, 2 and zone 3-6 stator windings. The capacitance and tan${\delta}$ in the zone 1, 2 of stator winding were higher than those of zone 3-6 in the stator winding. Experiments on microstructure property were conducted in the zone 1, 2 and zone 3-6 insulations, which were drawn out from stator windings of the large turbine generator. Microstructure analysis was characterized using scanning electron microscope(SEM). SEM results indicated that several isolated delaminations occurred at the interface of mica/epoxy insulations. Both thermal and mechanical aging cause the delamination.

  • PDF

Study on Reliability of Water Absorption Diagnosis through Precise Water Absorption Test

  • Kim, Hee-Soo;Bae, Yong-Chae;Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.772-777
    • /
    • 2012
  • Accidents caused by water absorption in water-cooled generator stator windings often occur all over the world. The absorption into the insulator of the coolant, which is used to cool down the heat generated by stator windings during operation, leads to the deterioration of dielectric strength, and insulation breakdown. An insulation breakdown may cause not only an enormous economic loss but also a very serious grid accident that would compromise stable supply of electric power. More than 50 % of domestic generators have been in operation for more than 15 years, and water absorption tests performed on 50 water-cooled generator stator windings during a five-year planned preventive maintenance period beginning in 2006 identified water absorption problems in 10 of them, all of which required repair. Because the existing water absorption test detects this problem by utilizing stochastic methods after measuring the capacitances at the final positions of insulation breakdown, its accuracy is limited. This study demonstrates that water absorption can be more accurately diagnosed by utilizing method along with a more precise one.