• Title/Summary/Keyword: Generator stator

Search Result 338, Processing Time 0.031 seconds

Study of PD Location in Generators by PD Pulses Propagation

  • Cheng, Yang-Chun;Li, Cheng-Rong;Wang, Wei
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.252-256
    • /
    • 2006
  • When a partial discharge takes place at the stator of a generator, the electrical pulse will propagate along the stator bars and the capacitor chains formed by the end part of the stator winds. On the first path, the pulse propagates as a travel wave at slow speed. On the second path, the pulse propagates at quick speed. Based on the data of the experiments on a real 50 MW steam generator, the author has found the pulses can propagate by magnetic field of the stator winding. It was studied that how to locating the partial discharge by signals coming from the different paths, including the features of signals on the two paths at time domain and frequency domain, the measurement frequency rang of the signals, the blind area, the advantage and disadvantage of this method.

A study on the Analysis of Insulation Aging for Generator stator windings (수력발전기 고정자권선의 절연열화 분석)

  • Byun, D.G.;Oh, B.K.;Kang, D.S.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2072-2074
    • /
    • 2005
  • This test was performed to assess the insulation condition of the stator winding of 3.45kV hydro generator in insulation deterioration condition which was due to long service period(30years) since installed We extracted 12 stator wingdings from the hydro generator core, cut the stator windings into three parts(Middle winding part, slot winding part, end wingding part), and evaluated the insulation condition to know the deterioration condition of each parts. This insulation diagnostic tests include AC current, dissipation factor, and partial discharg test.

  • PDF

A Diagnosing System Development for Insulated Stator of Large Generator (대형 발전기의 고정자 절연 진단용 시스템 개발)

  • Park, Seong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.52-54
    • /
    • 2002
  • This research presented in this paper focuses on a system development for checking stator's wedge of large generator in heavy industry. The system is composed of impactor, A/D converter and digital signal processing board. Also this paper proposes a method for detection of stator's insulating state using analysis algorithm. As developed impact system is acting, impact wave is generated real time and transferred data to microprocessor. Using communication program this signal move microprocessor to hard directory of note book with 1000 data/sec. The developed system and analysis program performed very well by real stator's wedge in large generator.

A Study on the Evaluation Criteria for the Remaining Life of Hydro-Generator Stator Insulation (수력 발전기 고정자 권선의 절연수명 평가기준 설정에 관한 연구)

  • Hwang, D.H.;Kim, Y.J.;Kim, J.B.;Park, M.S.;Kim, H.G.;Lee, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1769-1773
    • /
    • 1996
  • The remaining life of generator stator winding has been the controversial issue amomg many experts in this area. The report from Japan claims that they can predict the remaining life of generator winding, while the North American has the negative opinion about it. This study aimed at verifying the validity of both Japanese criteria and North American argument on evaluation of generator winding insulation. Non destructive and destructive tests were performed on two hydro-generators. The test results showed that the trend analysis of stator winding insulation was the better option.

  • PDF

A Study on The Insulation Diagnostic and Life Evaluation for the Pumped Storage Generator/Motor (양수 발전 전동기 고정자 권선 절연진단 및 수명평가에 관한 연구)

  • Park, Jong-Jeong;Kim, Hee-Dong;Lee, Young-Jun;Ju, Young-Ho;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1717-1720
    • /
    • 1998
  • In pumped storage Generator-motor stator windings gradually deteriorates due to mechanist, thermal, electrical stresses. These stresses combine to result in loose windings, delamination of the stator insulation and/or electrical tracking of the endwinding, all of which can lead to stator insulation failures. Since the degration of generator-motor is gradually occurred, regular inspection system is necessary to monitor degrading. The result of this diagnosis is a basic for the maintxnance of generator-motor.

  • PDF

Electrical Degradation of Stator Bars for Large Turbine Generator after 1000 Thermal Cycles (대형 터빈 발전기용 고정자 권선의 1000 thermal cycle 후 전기적 특성 변화)

  • Kang, Myung-Guk;Kim, Tae-Hee;Lee, Jai-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.975-976
    • /
    • 2007
  • Thermal and mechanical stresses, caused by repetitive start and stop and load fluctuation during long time operation, on winding stator bars are one of the main causes for electrical degradation of insulating materials. To understand the degradation process, we manufactured bar specimens with the same processes that make generator winding stator bars and the specimens were subjected to various degrees of thermal cycling. Measurements of the insulation properties, such as dissipation factor, tip-up and partial discharge, for un-aged specimens and for specimens aged by thermal cycling at 50, 100, 250, 500 and 1000 thermal cycles were performed. Finally all specimens were tested to obtain electrical breakdown voltages. In this paper we present the data and electrical degradation analysis results obtained during this program.

  • PDF

A Study on the Temperature-rise at the Stator end portion of Turbine Generator (터빈 발전기 고정자단부의 온도상승에 관한 연구)

  • 임한석
    • Journal of the Korean Professional Engineers Association
    • /
    • v.10 no.1
    • /
    • pp.10-14
    • /
    • 1977
  • In accordance with introducing extra high voltage system, system power plants have to be operated in underexcited condition, which causes temperature rise at the stator end portion of turbine generator. This Paper deals with (1) various elements affecting temperature rise and (2) methods of pre-estimating temperature rise.

  • PDF

Ion Migration Characteristics of a High Voltage Rotary Spark Airgap (고전압 회전 스파크 공격간의 이온 이동특성)

  • Moon Jae-Duk;Kim Tai-Hoon;Hwang Deok-hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.427-432
    • /
    • 2005
  • Ion migration characteristics of a rotary spark airgap of high voltage Pulse generator had been investigated. It was considered that the ion migration speed and the ions of the gases(atmosphere gases, $O_2,\;N_2,,\;and\;H_{2}O,\;etc$.) and the charged very fine particles(about $10\~100nm$ size) migrated through the upper stator ball and bottom stator ball of the rotary spark airgap would determined the rise and fall times of the output high voltage pulse. In this paper, a basic study on the ion migration characteristics of the rotary spark airgap between the spark stator ball and the ion-sensing electrode of the proposed high voltage pulse generator have been investigated experimentally. As a result, the three kinds of ion speeds were detected by the ion-sensing electrode installed at the position of the bottom stator ball of the ball type sparkgap high voltage pulse generator. The migration velocities, diameters, masses, charges, numbers of the ions and particles were obtained by experiments and calculations, which, however, would determine the rise and fall times of the output high voltage pulse.

Analysis of Insulation Aging Mechanism in Generator Stator Windings (발전기 고정자 권선의 절연열화 메카니즘 분석)

  • 김희동
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.119-126
    • /
    • 2002
  • The mica/epoxy composite used in generator(rated 22 kV and 500 MW) stator windings was aged at 180$\^{C}$ for up to 1000 hours in air and hydrogen. The degradation mechanism was investigated through the defect of evolution and microstructural analysis by performing SEM(Scanning Electron Microscope). As the thermal aging time increases, the number of voids per unit volume increases at the mica/epoxy interface of generator stator windings. The aged specimens in hydrogen showed retarded generation and growth of voids. Accelerated aging tests were conducted using the combination of thermal and electrical aging in air and hydrogen. The aging was carried out at a combined stress such as thermal aging at 110$\^{C}$, electrical aging at 5.5 kV/mm and frequencies 420 Hz in air, and electrical aging at 5.5 kV/mm and frequencies 420 Hz in hydrogen (pressure 4 kg/㎠). Thermal and electrical aging generates large voids at the mica/epoxy interface in air. Electrical aging in hydrogen also generates small voids, delaminations and cracks in mica tapes.