• Title/Summary/Keyword: Generator mode

Search Result 482, Processing Time 0.021 seconds

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screen Doors are Installed (I) - Analysis on Smoke Control Performance on the Platform (스크린도어가 설치된 대심도 지하역사의 제연 실험 I - 승강장에서의 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin;Kwon, Tae-Soon;Lee, Duck-Hee
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.485-496
    • /
    • 2018
  • In this paper, the smoke behavior in an underground station on operation of the fans in the ventiliation of the station was measured by the experimental method when the fire occurred in the underground station platform where the platfrom screen door was installed. The ventilation characteristics were compared when the ventilation system was operated and when the ventilation system was not operated when a fire occurred at the platform where the clean door was closed. To simulate the fire smoke, the smoke generated from the smoke generator was heated using a hot air fan. The transmittance was measured using a smoke density meter to quantitatively measure fire smoke. If the screen door is closed and the ventilation system of the underground station does not work, it is confirmed that if a fire occurs in the platform, smoke accumulates inside the platform, evacuating passengers is very difficult and can lead to a very dangerous situation. On the other hand, under the condition that the ventilation facility of the subway station is operated, the smoke evacuates to the outside through the ventilation facility of the underground station, and airflow is formed in the direction from the waiting room to the waiting area, so that the passenger located on the platform can safely evacuate toward the concourse. In the following paper, we will discuss the concurrent effect of tunnel ventilation through tunnel vent near the platform.

A Design of PLL and Spread Spectrum Clock Generator for 2.7Gbps/1.62Gbps DisplayPort Transmitter (2.7Gbps/1.62Gbps DisplayPort 송신기용 PLL 및 확산대역 클록 발생기의 설계)

  • Kim, Young-Shin;Kim, Seong-Geun;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper presents a design of PLL and SSCG for reducing the EMI effect at the electronic machinery and tools for DisplayPort application. This system is composed of the essential element of PLL and Charge-Pump2 and Reference Clock Divider to implement the SSCG operation. In this paper, 270MHz/162MHz dual-mode PLL that can provide 10-phase and 1.35GHz/810MHz PLL that can reduce the jitter are designed for 2.7Gbps/162Gbps DisplayPort application. The jitter can be reduced drastically by combining 270MHz/162MHz PLL with 2-stage 5 to 1 serializer and 1.35GHz PLL with 2 to 1 serializer. This paper propose the frequency divider topology which can share the divider between modes and guarantee the 50% duty ratio. And, the output current mismatch can be reduced by using the proposed charge-pump topology. It is implemented using 0.13 um CMOS process and die areas of 270MHz/162MHz PLL and 1.35GHz/810MHz PLL are $650um\;{\times}\;500um$ and $600um\;{\times}\;500um$, respectively. The VCO tuning range of 270 MHz/162 MHz PLL is 330 MHz and the phase noise is -114 dBc/Hz at 1 MHz offset. The measured SSCG down spread amplitude is 0.5% and modulation frequency is 31kHz. The total power consumption is 48mW.