• Title/Summary/Keyword: Generator

Search Result 8,664, Processing Time 0.033 seconds

Starting Mode Analysis of Flat-type Linear Generator for Free-Piston Engine (Free-Piston 엔진용 평판형 선형 발전기를 이용한 기동모드 해석)

  • Kim, Young-Wook;Lim, Jae-Won;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.966-971
    • /
    • 2008
  • Free-piston engine system is a new type energy converter which uses a linear motion of piston by using linear generator. In free-piston engine system, the piston is not connected to a crank-shaft. The major advantages of free-piston engine system are high efficiency and low mechanical loss from the absence of motion conversion devices. Linear generator of free-piston engine system is used as generator and starting motor. In design step, considering of back-emf and detent force characteristics for generating mode and thrust and control characteristics for starting mode is needed. In this research, generating mode of flat-type linear generator and tubular-type linear generator is analyzed by finite element analysis method and starting mode of both type linear generators is analyzed by using capability curve. Capability curve is plotted from electrical parameters of both type linear generator and motion profile is calculated from mechanical parameters.

Characteristics Analysis of Induction Generator with a Change in Rotor Speed (회전속도 변화에 따른 유도발전기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung;Kim, Young-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2225-2229
    • /
    • 2011
  • Squirrel cage induction motor is the main driving system of industrial field and familiar with its use in a large variety of applications. However, many engineer are unfamiliar with the induction generator, even though no difference exists between both machines except for the mode of operation. But an induction generator is commonly used for micro & small hydro power applications due to its simplicity, reliability, low cost and robustness. Input and output of induction motor has turned against at the induction generator operation. Rotation speed of induction generator is small faster than induction motor. As output of induction machines increases with the increasement of speed, so loss is same. Actually, generator efficiency is lower than motor at this condition. If induction generator is connected with mechanical load, total efficiency is decreased. In this paper, we analyzed that input, output, torque and efficiency is different from each other above and below synchronous speed.

A vision algorithm for finding the centers of steam generator tubes using the generalized symmetry transform (일반화 대칭변환을 이용한 원전 증기발생기 전열관 중심인식 비젼 알고리즘)

  • 장태인;곽귀일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1367-1370
    • /
    • 1997
  • This paper presents a vision algorithm for finding the centers of steam generator tubes using the generalized symmetry transform, which is used for ECT(Eddy Current Test) of steam generator tubes in nuclear power plants. The geometrical properties of the image representing steam generator tubes shows that they have amost circular or somewhat elliptic appearances and each tube has strong symmetry about its center. So we apply the generalized symmetry transform to finding centers of steam geneator tubes. But applying the generalized symmetry transform itself without any modification gives difficulties in obtaining the exact centers of steam generator tubes. But applying the generalized symmetry transform itself without any modification gives difficulties in obtaining the exact centers of tubes due to the shadow effect generated by the local light installed inside steam generator. Therefore we make the generalized symmetry transform modified, which uses a modified phase weight function in getting the symmetry magnitude in order to overcome the misleading effect by the local light. The experimental results indicate that the proposed vision algorithm efficiently recongnizes centers of steam generator tubes.

  • PDF

The Development of the Turbo-Generator System with direct driving High Speed Generator. (고속 발전기 직접 구동 방식의 터보 제너레이터 시스템 개발)

  • 노민식;권정혁;변지섭
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2769-2772
    • /
    • 2003
  • This paper presents results of the development of the Turbo-generator system with structure which is HSG(High Speed Generator) installed to high speed gas-turbine engine directly. Turbo-generator with high speed motor-generator directly has many advantages aspects of weight, size, lubrication system and complexity of the system compared of conventional turbo-generator system with gear-box. But because of direct high speed operation of the high speed generator, we have to need stable high speed motor driving algorithm for perfect engine ignition when gas turbine starting. Also we have to need design of the PCU(Power Conditioning Unit) for converting high speed AC output power to conventional AC power or needed DC power.

  • PDF

Development of Inter-Turn Short Circuits Sensor for Rotor Winding of Synchronous Generator (발전기 회전자의 층간단락 감지기 개발)

  • Nam, Jong-Ha;Lee, Seung-Hak;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.307-312
    • /
    • 2002
  • Inter-turn short circuits can have significant effects on a generator and its performance. The Inter-turn short circuits sensor for synchronous generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a shorted- turn test was performed at the Seoinchon combined cycle power plant on gas turbine generator and stim turbine generator. This sensor will be used as a detecting of Inter-turn short circuits for synchronous generator's field winding.

Stress Analysis and Life Evaluation of Rotor and Retaining Ring of Generator for fossil power plant (화력용 발전기 회전자 및 리테인 링의 응력해석 및 수명평가)

  • Lee, Ji-Moon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.148-153
    • /
    • 2004
  • This paper represents that parts of a large generator operating in 1000 MW are affected by centrifugal forces due to high-speed rotation in 3600 rpm and 3D FEM Analyses are required to obtained the structural reliability of the generator. From these results, one would know the weakest locations and the stress distributions. The fatigue life is calculated in order to grasp the remaining life of generator. 2D and 3D analyses are performed to calculate stresses of the generator rotor and the retaining ring. From 2D results, we find the SCF at the slot and sub-slot of the rotor. 3D analysis is applied at the end part of generator rotor, which represents complex geometry, and rotor and retaining ring shrink thermally. With these results, designers of rotor and retaining ring can compare with the results of design code and verify the stress distributions of generator rotor and retaining ring, and then calculate the remaining life from the low-cycle fatigue data.

  • PDF

Application of Vortex Generators on Smart Un-manned Aerial Vehicle(SUAV) (스마트 무인기에 부착한 Vortex Generator 효과)

  • Chung, Jin-Deog;Choi, Sung-Wook;Cho, Tae-Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.688-693
    • /
    • 2007
  • To improve aerodynamic efficiency of the Smart Un-manned Aerial Vehicle(SUAV), vortex generator was applied along the wing upper surface during SUAV tests. Vortex generator, initially used in TR-S2 configuration to enhance lift characteristic, increased lift coefficient. Meanwhile vortex generator produced excessive drag and eventually reduced lift-to-drag ratio. To examine the effect of vortex generator's height, three different heights of vortex generator were used for various SUAV configuration. Vortex generator of 3mm height used in TR-S4 configuration produced 3.1% increase in maximum lift coefficient and 1.5% reduction in lift-to-drag ratio.

Analysis of Insulation Characteristic for Small Hydro Generator (소수력발전기 절연특성분석)

  • Oh, Bong-Keun;Chang, Jeong-Ho;Lee, Kwang-Ho;Kang, Dong-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.142-145
    • /
    • 2008
  • Electrical insulation of small hydro generator stator winding is one of the most important parts in generator facilities. Some stator winding insulation problems can be identified through analysis of insulation diagnostic test. So, Diagnosis of stator winding insulation is an important measure of ensuring the safe operation and extending the remaining life of small hydro generator. This paper presents case studies of insulation failure in generator stator windings and the results of insulation diagnostic test for small hydro generator stator windings. Especially, Conducting the insulation diagnostic test before the generator installed in site is very important process to keep the good insulation condition in service.

  • PDF

Determination of Critical Generator Group Using Accelerating Power and Synchronizing Power Coefficient in the Transient Energy Function Method

  • Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • This paper proposes an algorithm for determining critical generator lists using accelerating power and synchronizing power coefficient (SPC), and critical generator group (CGG) from CGG candidates, which is a combination of critical generators. The accurate determination of CGG provides a more accurate energy margin while providing system operator with information of possible unstable generator group. Classical transient energy function (TEF) method selects the critical generators with big corrected kinetic energy of each generator at the moment of fault removal. However, the generator with small acceleration after fault, that is, the generator with small corrected kinetic energy, is also likely to belong to CGG if the generator has small synchronizing power. The proposed algorithm has been verified to be effective compared with the classical TEF method. We utilized the power system of Korean Electric Power Corporation(KEPCO) as a test system.

Water Absorption Sensor of Generator Stator Bar Insulation using Cross Capacitance (크로스 커패시턴스를 이용한 발전기 고정자 권선 절연물 흡습 측정 센서)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Doo-Young;Lee, Wook-Ryun;Lee, Rae-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1972-1977
    • /
    • 2011
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. To cool down the heat emitted from generator winding during its operation, a majority of generators use de-mineralized water characterized by high cooling efficiency. Contrary to such the excellent cooling efficiency, however, the damaged bar insulations attributed to the absorption of cooling water in the generator stator winding lead to highly time- and cost consuming efforts as well as to service deterioration due to unexpected forced outage of generator. It is described that the new design of water absorption sensor using cross capacitance for generator in power plant in order to increase the reliability of water absorption diagnostics for generator stator bar insulation.