Artificial intelligence(AI) is spurring advancements in EdTech, the merger of technology and education. This includes the creation of effective learning materials and personalized student experiences. Our study focuses on developing a programming education software that employs state-of-the-art generative AI. Our software also includes prompts optimized for programming code analysis, which are based on the well-known ChatGPT API. Furthermore, the necessary functions for acquiring programming skills were created with a user interface and developed as a question-and-answer template function based on an AI chatbot. The objective of this study is to guide the development of educational programmes that make use of generative AI.
International conference on construction engineering and project management
/
2020.12a
/
pp.225-234
/
2020
Reliability-based structural optimization usually requires designers or engineers model different designs manually, which is considered very time consuming and all possibilities cannot be fully explored. Otherwise, a lot of time are needed for designers or engineers to learn mathematical modeling and programming skills. Therefore, a framework that integrates generative design, structural simulation and reliability theory is proposed. With the proposed framework, various designs are generated based on a set of rules and parameters defined based on visual programming, and their structural performance are simulated by OpenSees. Then, reliability of each design is evaluated based on the simulation results, and an optimal design can be found. The proposed framework and prototype are tested in the optimization of a steel frame structure, and results illustrate that generative design based on visual programming is user friendly and different design possibilities can be explored in an efficient way. It is also reported that structural reliability can be assessed in an automatic way by integrating Dynamo and OpenSees. This research contributes to the body of knowledge by providing a novel framework for automatic reliability evaluation and structural optimization.
The remarkable advancement of artificial intelligence technology is bringing innovative changes to the field of education. In particular, generative AI models like ChatGPT hold great potential in self-directed programming education due to their natural conversational abilities. This study analyzed the learning effects of using ChatGPT in Scratch classes for non-SW majors. Dividing the classes into those using ChatGPT and those not, and conducting the same evaluations and surveys for the ChatGPT-utilizing group, the results showed that ChatGPT significantly enhanced learning outcomes and the utility of ChatGPT was highly evaluated in advanced learning areas such as understanding Scratch's advanced features and algorithms. This study is significant as it empirically demonstrates the potential of generative AI like ChatGPT as an effective tool in programming education.
This study examines the changes in learners' positive/negative perceptions of classroom experience and actual utilisation of AI chatbots in response to the recent changes in education trends caused by generative AI. AI chatbots were utilised in web programming classes for six classes of engineering students over two semesters. The learners' experience and usage were analysed from the beginning of the semester through surveys until the submission of midterm and final examination reports. The study's results indicate that the chatbot enhanced learning by providing Q/A feedback and solving practical problems. Additionally, the perception of the chatbot improved from midterm to the end of the course. The study also drew meaningful conclusions about the issue of community disconnection (personalisation) in the classroom and how to use it as educational software. This research is significant for the development of generative AI-based software.
Recently a lot of researches on the component-based software product lines and on applying generative programming into software product lines are being performed actively. This paper proposes an automatic component reconfiguration tool that could be applied in constructing the component-based software product lines. Our tool accepts the reuser's requirement via a feature model which is the main result of the domain engineering, and makes the feature configuration from this requirement. Then it generates the source code of the reconfigured component according to this feature configuration. To accomplish this process, the component family in our tool should have the architecture of GenVoca that is one of the most influential generative programming approaches. In addition, XSLT scripts provide the code templates for implementation elements which are the ingredients of the target component. Taking the ‘Bank Account' component family as our example, we showed that our component reconfiguration tool produced automatically the component source code that the reuser wants to create. The result of this paper would be applied extensively for creasing the productivity of building the software product lines.
This study studied a teaching model for software education using generative AI. The purpose of the study is to use ChatGPT as an instructor's assistant in programming classes for non-major students by using ChatGPT in software education. In addition, we designed ChatGPT to enable individual learning for learners and provide immediate feedback when students need it. The research method was conducted using ChatGPT as an assistant for non-computer majors taking a liberal arts Python class. In addition, we confirmed whether ChatGPT has the potential as an assistant in programming education for non-major students. Students actively used ChatGPT for writing assignments, correcting errors, writing coding, and acquiring knowledge, and confirmed various advantages, such as being able to focus on understanding the program rather than spending a lot of time resolving errors. We were able to see the potential for ChatGPT to increase students' learning efficiency, and we were able to see that more research is needed on its use in education. In the future, research will be conducted on the development, supplementation, and evaluation methods of educational models using ChatGPT.
Journal of the Korea Society of Computer and Information
/
v.29
no.4
/
pp.31-38
/
2024
This study proposes hyper-parameter settings for developing a generative AI-based learning support tool to facilitate programming education in online distance learning. We implemented an experimental tool that can set research hyper-parameters according to three different learning contexts, and evaluated the quality of responses from the generative AI using the tool. The experiment with the default hyper-parameter settings of the generative AI was used as the control group, and the experiment with the research hyper-parameters was used as the experimental group. The experiment results showed no significant difference between the two groups in the "Learning Support" context. However, in other two contexts ("Code Generation" and "Comment Generation"), it showed the average evaluation scores of the experimental group were found to be 11.6% points and 23% points higher than those of the control group respectively. Lastly, this study also observed that when the expected influence of response on learning motivation was presented in the 'system content', responses containing emotional support considering learning emotions were generated.
Journal of the Korea Society of Computer and Information
/
v.29
no.8
/
pp.191-200
/
2024
The rapid advancement of computer technology and artificial intelligence has significantly impacted software education in Korea. Consequently, the 2022 revised curriculum demands personalized education. However, implementing personalized education in schools is challenging. This study aims to facilitate personalized education by utilizing incorrect codes and error information submitted by beginners to construct prompts. And the difference in the frequency of correct feedback generated by the generative AI model and the prompts was examined. The results indicated that providing appropriate error information in the prompts yields better performance than relying solely on the excellence of the generative AI model itself. Through this research, we hope to establish a foundation for the realization of personalized education in programming education in Korea.
International Journal of Naval Architecture and Ocean Engineering
/
v.11
no.1
/
pp.44-51
/
2019
Designing sophisticate ship structures that satisfy several design criteria simultaneously with minimum weight and cost is an important engineering issue. For a ship structure composed of a shell and stiffeners, this issue is more serious because their mutual effect has to be addressed. In this study, a two-stage optimization method is proposed for the conceptual design of stiffeners in a ship's prow. In the first stage, a topology optimization method is used to determine a potential stiffener distribution based on the optimal results, whereupon stiffeners are constructed according to stiffener generative theory and the material distribution. In the second stage, size optimization is conducted to optimize the plate and stiffener sections simultaneously based on a parametric model. A final analysis model of the ship-prow structure is presented to assess the validity of this method. The analysis results show that the two-stage optimization method is effective for stiffener conceptual design, which provides a reference for designing actual stiffeners for ship hulls.
Journal of the Korean Society of Clothing and Textiles
/
v.47
no.6
/
pp.1137-1156
/
2023
With the advent of artificial intelligence (AI) during the Fourth Industrial Revolution, the fashion industry has simplified the production process and overcome the technical difficulties of design. This study anticipates likely changes in the digital age and develops a model that will allow consumers to design textile patterns using AI technology. Previous studies and industrial examples of AI technology's use in the textile design industry were investigated, and a textile pattern was developed using an AI algorithm. A new textile design model was then proposed based on its application to both virtual and physical clothing. Inspired by traditional Korean masks and props, AI technology was used to input color data from open application programming interface images. By inserting these into various repeating structures, a textile design was developed and simulated as garments for both virtual and real garments. We expect that this study will establish a new textile design development method for Generation Z, who favor customized designs. This study can inform the use of personalization in generative textile design as well as the systemization of technology-driven methods for customized and participatory textile design.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.