• Title/Summary/Keyword: Generative Models

Search Result 180, Processing Time 0.027 seconds

The Empirical Analysis of Factors Affecting the Intention of College Students to Use Generative AI Services (대학생의 생성형 AI 서비스 이용의도에 영향을 미치는 요인에 대한 실증분석)

  • Chang, Soo-jin;Chung, Byoung-gyu
    • Journal of Venture Innovation
    • /
    • v.6 no.4
    • /
    • pp.153-170
    • /
    • 2023
  • Generative AI services, including ChatGPT, were becoming increasingly active. This study aimed to empirically analyze the factors that promoted and hindered the diffusion of such services from a consumer perspective. Accordingly, a research model was developed based on the Value-based Adoption Model (VAM) framework, addressing both benefit and sacrifice factors. Benefits identified included usefulness and enjoyment, while sacrifices were security and hallucination. The study analyzed how these factors affected the intention to use generative AI services. A survey was conducted among college students for empirical analysis, and 200 valid responses were analyzed. The analysis utilized structural equation modeling with AMOS 24. The empirical results showed that usefulness and enjoyment had a significant positive impact on perceived value, while security and hallucination had a significant negative impact. The order of influence on perceived value was usefulness, hallucination, security, and then enjoyment. Perceived value had a significant positive impact on usage intention. Moreover, perceived value was found to mediate the relationship between usefulness, enjoyment, security, hallucination, and the intention to use generative AI services. These findings expanded the research horizon academically by validating the effectiveness of generative AI services based on existing models and demonstrated the continued importance of usefulness in a practical context.

Designing Collective Intelligence-based Instructional Models for Teaching Socioscientific Issues (집단지성 원리를 적용한 과학관련 사회·윤리적 쟁점 수업 모형의 개발)

  • Lee, Hyunju;Choi, Yunhee;Ko, Yeonjoo
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.6
    • /
    • pp.523-534
    • /
    • 2014
  • This study aimed to develop collective intelligence (CI) based instructional models for teaching socioscientific issues on the basis of intimate collaboration with science teachers, and to investigate the participating teachers' perceptions on the effectiveness of the instructional models. Adapting the ADDIE model, we suggested three types of SSI instructional models (i.e. generative model, exploratory model, and decision-making model). Generative models emphasized the process of brainstorming ideas or possible solutions for SSI. Exploratory models focused on providing students opportunities to explore various SSI cases and diverse perspectives to understand its controversial nature and complexity. Decision-making models encouraged students to negotiate or develop a group-consensus on SSI through the dialogical process. After implementing the instructional models in the science classroom, the teachers reported that CI-based SSI instructional models contributed to encouraging students' active participation and collaboration as well as to improving the quality of their argument or discourses on SSI. They also supported the importance of developing collective consciousness on the issues in the beginning of the SSI class, providing independent time and space for reflecting on their personal values and opinions with scientific evidence, and formulating an atmosphere where they freely exchanged opinions and feedback for constructing better collective ideas.

Missing Value Imputation Technique for Water Quality Dataset

  • Jin-Young Jun;Youn-A Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.39-46
    • /
    • 2024
  • Many researchers make efforts to evaluate water quality using various models. Such models require a dataset without missing values, but in real world, most datasets include missing values for various reasons. Simple deletion of samples having missing value(s) could distort distribution of the underlying data and pose a significant risk of biasing the model's inference when the missing mechanism is not MCAR. In this study, to explore the most appropriate technique for handing missing values in water quality data, several imputation techniques were experimented based on existing KNN and MICE imputation with/without the generative neural network model, Autoencoder(AE) and Denoising Autoencoder(DAE). The results shows that KNN and MICE combined imputation without generative networks provides the closest estimated values to the true values. When evaluating binary classification models based on support vector machine and ensemble algorithms after applying the combined imputation technique to the observed water quality dataset with missing values, it shows better performance in terms of Accuracy, F1 score, RoC-AuC score and MCC compared to those evaluated after deleting samples having missing values.

An Analysis Study on Collaborative AI for the Jewelry Business (주얼리 비즈니스를 위한 협업형 AI의 분석 연구)

  • Hye-Rim Kang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.305-310
    • /
    • 2024
  • With the emergence of generative AI, a new era of coexistence with humanity has begun. The vast data-driven learning capabilities of AI are being utilized in various industries to achieve a level of productivity distinct from human learning. However, AI also manifests societal phenomena such as technophobia. This study aims to analyze collaborative AI models based on an understanding of AI and identify areas within the jewelry industry where these models can be applied. The utilization of collaborative AI models can lead to the acceleration of idea development, enhancement of design capabilities, increased productivity, and the internalization of multimodal functions. Ultimately, AI should be used as a collaborative tool from a utilitarian perspective, which requires a proactive, human-centric mindset. This research proposes collaborative AI strategies for the jewelry business, hoping to enhance the industry's competitiveness.

Improving Explainability of Generative Pre-trained Transformer Model for Classification of Construction Accident Types: Validation of Saliency Visualization

  • Byunghee YOO;Yuncheul WOO;Jinwoo KIM;Moonseo PARK;Changbum Ryan AHN
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1284-1284
    • /
    • 2024
  • Leveraging large language models and safety accident report data has unique potential for analyzing construction accidents, including the classification of accident types, injured parts, and work processes, using unstructured free text accident scenarios. We previously proposed a novel approach that harnesses the power of fine-tuned Generative Pre-trained Transformer to classify 6 types of construction accidents (caught-in-between, cuts, falls, struck-by, trips, and other) with an accuracy of 82.33%. Furthermore, we proposed a novel methodology, saliency visualization, to discern which words are deemed important by black box models within a sentence associated with construction accidents. It helps understand how individual words in an input sentence affect the final output and seeks to make the model's prediction accuracy more understandable and interpretable for users. This involves deliberately altering the position of words within a sentence to reveal their specific roles in shaping the overall output. However, the validation of saliency visualization results remains insufficient and needs further analysis. In this context, this study aims to qualitatively validate the effectiveness of saliency visualization methods. In the exploration of saliency visualization, the elements with the highest importance scores were qualitatively validated against the construction accident risk factors (e.g., "the 4m pipe," "ear," "to extract staircase") emerging from Construction Safety Management's Integrated Information data scenarios provided by the Ministry of Land, Infrastructure, and Transport, Republic of Korea. Additionally, construction accident precursors (e.g., "grinding," "pipe," "slippery floor") identified from existing literature, which are early indicators or warning signs of potential accidents, were compared with the words with the highest importance scores of saliency visualization. We observed that the words from the saliency visualization are included in the pre-identified accident precursors and risk factors. This study highlights how employing saliency visualization enhances the interpretability of models based on large language processing, providing valuable insights into the underlying causes driving accident predictions.

Selection of Three (E)UV Channels for Solar Satellite Missions by Deep Learning

  • Lim, Daye;Moon, Yong-Jae;Park, Eunsu;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.42.2-43
    • /
    • 2021
  • We address a question of what are three main channels that can best translate other channels in ultraviolet (UV) and extreme UV (EUV) observations. For this, we compare the image translations among the nine channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory using a deep learning model based on conditional generative adversarial networks. In this study, we develop 170 deep learning models: 72 models for single-channel input, 56 models for double-channel input, and 42 models for triple-channel input. All models have a single-channel output. Then we evaluate the model results by pixel-to-pixel correlation coefficients (CCs) within the solar disk. Major results from this study are as follows. First, the model with 131 Å shows the best performance (average CC = 0.84) among single-channel models. Second, the model with 131 and 1600 Å shows the best translation (average CC = 0.95) among double-channel models. Third, among the triple-channel models with the highest average CC (0.97), the model with 131, 1600, and 304 Å is suggested in that the minimum CC (0.96) is the highest. Interestingly they are representative coronal, photospheric, and chromospheric lines, respectively. Our results may be used as a secondary perspective in addition to primary scientific purposes in selecting a few channels of an UV/EUV imaging instrument for future solar satellite missions.

  • PDF

Analysis of Discriminatory Patterns in Performing Arts Recognized by Large Language Models (LLMs): Focused on ChatGPT (거대언어모델(LLM)이 인식하는 공연예술의 차별 양상 분석: ChatGPT를 중심으로)

  • Jiae Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.401-418
    • /
    • 2023
  • Recently, the socio-economic interest in Large Language Models (LLMs) has been growing due to the emergence of ChatGPT. As a type of generative AI, LLMs have reached the level of script creation. In this regard, it is important to address the issue of discrimination (sexism, racism, religious discrimination, ageism, etc.) in the performing arts in general or in specific performing arts works or organizations in a large language model that will be widely used by the general public and professionals. However, there has not yet been a full-scale investigation and discussion on the issue of discrimination in the performing arts in large-scale language models. Therefore, the purpose of this study is to textually analyze the perceptions of discrimination issues in the performing arts from LMMs and to derive implications for the performing arts field and the development of LMMs. First, BBQ (Bias Benchmark for QA) questions and measures for nine discrimination issues were used to measure the sensitivity to discrimination of the giant language models, and the answers derived from the representative giant language models were verified by performing arts experts to see if there were any parts of the giant language models' misperceptions, and then the giant language models' perceptions of the ethics of discriminatory views in the performing arts field were analyzed through the content analysis method. As a result of the analysis, implications for the performing arts field and points to be noted in the development of large-scale linguistic models were derived and discussed.

GENERATION OF FUTURE MAGNETOGRAMS FROM PREVIOUS SDO/HMI DATA USING DEEP LEARNING

  • Jeon, Seonggyeong;Moon, Yong-Jae;Park, Eunsu;Shin, Kyungin;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.82.3-82.3
    • /
    • 2019
  • In this study, we generate future full disk magnetograms in 12, 24, 36 and 48 hours advance from SDO/HMI images using deep learning. To perform this generation, we apply the convolutional generative adversarial network (cGAN) algorithm to a series of SDO/HMI magnetograms. We use SDO/HMI data from 2011 to 2016 for training four models. The models make AI-generated images for 2017 HMI data and compare them with the actual HMI magnetograms for evaluation. The AI-generated images by each model are very similar to the actual images. The average correlation coefficient between the two images for about 600 data sets are about 0.85 for four models. We are examining hundreds of active regions for more detail comparison. In the future we will use pix2pix HD and video2video translation networks for image prediction.

  • PDF

Technical Trends in Hyperscale Artificial Intelligence Processors (초거대 인공지능 프로세서 반도체 기술 개발 동향)

  • W. Jeon;C.G. Lyuh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • The emergence of generative hyperscale artificial intelligence (AI) has enabled new services, such as image-generating AI and conversational AI based on large language models. Such services likely lead to the influx of numerous users, who cannot be handled using conventional AI models. Furthermore, the exponential increase in training data, computations, and high user demand of AI models has led to intensive hardware resource consumption, highlighting the need to develop domain-specific semiconductors for hyperscale AI. In this technical report, we describe development trends in technologies for hyperscale AI processors pursued by domestic and foreign semiconductor companies, such as NVIDIA, Graphcore, Tesla, Google, Meta, SAPEON, FuriosaAI, and Rebellions.

Research on Digital Construction Site Management Using Drone and Vision Processing Technology (드론 및 비전 프로세싱 기술을 활용한 디지털 건설현장 관리에 대한 연구)

  • Seo, Min Jo;Park, Kyung Kyu;Lee, Seung Been;Kim, Si Uk;Choi, Won Jun;Kim, Chee Kyeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.239-240
    • /
    • 2023
  • Construction site management involves overseeing tasks from the construction phase to the maintenance stage, and digitalization of construction sites is necessary for digital construction site management. In this study, we aim to conduct research on object recognition at construction sites using drones. Images of construction sites captured by drones are reconstructed into BIM (Building Information Modeling) models, and objects are recognized after partially rendering the models using artificial intelligence. For the photorealistic rendering of the BIM models, both traditional filtering techniques and the generative adversarial network (GAN) model were used, while the YOLO (You Only Look Once) model was employed for object recognition. This study is expected to provide insights into the research direction of digital construction site management and help assess the potential and future value of introducing artificial intelligence in the construction industry.

  • PDF