• Title/Summary/Keyword: Generative Models

Search Result 180, Processing Time 0.025 seconds

Single Image Dehazing: An Analysis on Generative Adversarial Network

  • Amina Khatun;Mohammad Reduanul Haque;Rabeya Basri;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.136-142
    • /
    • 2024
  • Haze is a very common phenomenon that degrades or reduces the visibility. It causes various problems where high quality images are required such as traffic and security monitoring. So haze removal from images receives great attention for clear vision. Due to its huge impact, significant advances have been achieved but the task yet remains a challenging one. Recently, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired "in the wild" and how we could gauge the progress in the field. This paper aims to bridge this gap. We present a comprehensive study and experimental evaluation on diverse GAN models in single image dehazing through benchmark datasets.

Assessment and Analysis of Fidelity and Diversity for GAN-based Medical Image Generative Model (GAN 기반 의료영상 생성 모델에 대한 품질 및 다양성 평가 및 분석)

  • Jang, Yoojin;Yoo, Jaejun;Hong, Helen
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.2
    • /
    • pp.11-19
    • /
    • 2022
  • Recently, various researches on medical image generation have been suggested, and it becomes crucial to accurately evaluate the quality and diversity of the generated medical images. For this purpose, the expert's visual turing test, feature distribution visualization, and quantitative evaluation through IS and FID are evaluated. However, there are few methods for quantitatively evaluating medical images in terms of fidelity and diversity. In this paper, images are generated by learning a chest CT dataset of non-small cell lung cancer patients through DCGAN and PGGAN generative models, and the performance of the two generative models are evaluated in terms of fidelity and diversity. The performance is quantitatively evaluated through IS and FID, which are one-dimensional score-based evaluation methods, and Precision and Recall, Improved Precision and Recall, which are two-dimensional score-based evaluation methods, and the characteristics and limitations of each evaluation method are also analyzed in medical imaging.

Research on AI Painting Generation Technology Based on the [Stable Diffusion]

  • Chenghao Wang;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.90-95
    • /
    • 2023
  • With the rapid development of deep learning and artificial intelligence, generative models have achieved remarkable success in the field of image generation. By combining the stable diffusion method with Web UI technology, a novel solution is provided for the application of AI painting generation. The application prospects of this technology are very broad and can be applied to multiple fields, such as digital art, concept design, game development, and more. Furthermore, the platform based on Web UI facilitates user operations, making the technology more easily applicable to practical scenarios. This paper introduces the basic principles of Stable Diffusion Web UI technology. This technique utilizes the stability of diffusion processes to improve the output quality of generative models. By gradually introducing noise during the generation process, the model can generate smoother and more coherent images. Additionally, the analysis of different model types and applications within Stable Diffusion Web UI provides creators with a more comprehensive understanding, offering valuable insights for fields such as artistic creation and design.

Morpho-GAN: Unsupervised Learning of Data with High Morphology using Generative Adversarial Networks (Morpho-GAN: Generative Adversarial Networks를 사용하여 높은 형태론 데이터에 대한 비지도학습)

  • Abduazimov, Azamat;Jo, GeunSik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.11-14
    • /
    • 2020
  • The importance of data in the development of deep learning is very high. Data with high morphological features are usually utilized in the domains where careful lens calibrations are needed by a human to capture those data. Synthesis of high morphological data for that domain can be a great asset to improve the classification accuracy of systems in the field. Unsupervised learning can be employed for this task. Generating photo-realistic objects of interest has been massively studied after Generative Adversarial Network (GAN) was introduced. In this paper, we propose Morpho-GAN, a method that unifies several GAN techniques to generate quality data of high morphology. Our method introduces a new suitable training objective in the discriminator of GAN to synthesize images that follow the distribution of the original dataset. The results demonstrate that the proposed method can generate plausible data as good as other modern baseline models while taking a less complex during training.

  • PDF

A Study on the Semantic Network Analysis for Exploring the Generative AI ChatGPT Paradigm in Tourism Section (관광분야 생성형 AI ChatGPT 패러다임 탐색을 위한 의미연결망 연구)

  • Han Jangheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.87-96
    • /
    • 2023
  • ChatGPT, a leader in generative AI, can use natural expressions like humans based on large-scale language models (LLM). The ability to grasp the context of the language and provide more specific answers by algorithms is excellent. It also has high-quality conversation capabilities that have significantly developed from past Chatbot services to the level of human conversation. In addition, it is expected to change the operation method of the tourism industry and improve the service by utilizing ChatGPT, a generative AI in the tourism sector. This study was conducted to explore ChatGPT trends and paradigms in tourism. The results of the study are as follows. First, keywords such as tourism, utilization, creation, technology, service, travel, holding, education, development, news, digital, future, and chatbot were widespread. Second, unlike other keywords, service, education, and Mokpo City data confirmed the results of a high degree of centrality. Third, due to CONCOR analysis, eight keyword clusters highly relevant to ChatGPT in the tourism sector emerged.

Empirical Study for Automatic Evaluation of Abstractive Summarization by Error-Types (오류 유형에 따른 생성요약 모델의 본문-요약문 간 요약 성능평가 비교)

  • Seungsoo Lee;Sangwoo Kang
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.3
    • /
    • pp.197-226
    • /
    • 2023
  • Generative Text Summarization is one of the Natural Language Processing tasks. It generates a short abbreviated summary while preserving the content of the long text. ROUGE is a widely used lexical-overlap based metric for text summarization models in generative summarization benchmarks. Although it shows very high performance, the studies report that 30% of the generated summary and the text are still inconsistent. This paper proposes a methodology for evaluating the performance of the summary model without using the correct summary. AggreFACT is a human-annotated dataset that classifies the types of errors in neural text summarization models. Among all the test candidates, the two cases, generation summary, and when errors occurred throughout the summary showed the highest correlation results. We observed that the proposed evaluation score showed a high correlation with models finetuned with BART and PEGASUS, which is pretrained with a large-scale Transformer structure.

Membership Inference Attack against Text-to-Image Model Based on Generating Adversarial Prompt Using Textual Inversion (Textual Inversion을 활용한 Adversarial Prompt 생성 기반 Text-to-Image 모델에 대한 멤버십 추론 공격)

  • Yoonju Oh;Sohee Park;Daeseon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1111-1123
    • /
    • 2023
  • In recent years, as generative models have developed, research that threatens them has also been actively conducted. We propose a new membership inference attack against text-to-image model. Existing membership inference attacks on Text-to-Image models produced a single image as captions of query images. On the other hand, this paper uses personalized embedding in query images through Textual Inversion. And we propose a membership inference attack that effectively generates multiple images as a method of generating Adversarial Prompt. In addition, the membership inference attack is tested for the first time on the Stable Diffusion model, which is attracting attention among the Text-to-Image models, and achieve an accuracy of up to 1.00.

Face Morphing Using Generative Adversarial Networks (Generative Adversarial Networks를 이용한 Face Morphing 기법 연구)

  • Han, Yoon;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.435-443
    • /
    • 2018
  • Recently, with the explosive development of computing power, various methods such as RNN and CNN have been proposed under the name of Deep Learning, which solve many problems of Computer Vision have. The Generative Adversarial Network, released in 2014, showed that the problem of computer vision can be sufficiently solved in unsupervised learning, and the generation domain can also be studied using learned generators. GAN is being developed in various forms in combination with various models. Machine learning has difficulty in collecting data. If it is too large, it is difficult to refine the effective data set by removing the noise. If it is too small, the small difference becomes too big noise, and learning is not easy. In this paper, we apply a deep CNN model for extracting facial region in image frame to GAN model as a preprocessing filter, and propose a method to produce composite images of various facial expressions by stably learning with limited collection data of two persons.

A Study on the Data Literacy Education in the Library of the Chat GPT, Generative AI Era (ChatGPT, 생성형 AI 시대 도서관의 데이터 리터러시 교육에 대한 연구)

  • Jeong-Mee Lee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.3
    • /
    • pp.303-323
    • /
    • 2023
  • The purpose of this study is to introduce this language model in the era of generative AI such as ChatGPT, and to provide direction for data literacy education components in libraries using it. To this end, the following three research questions are proposed. First, the technical features of ChatGPT-like language models are examined, and then, it is argued that data literacy education is necessary for the proper and accurate use of information by users using a service platform based on generative AI technology. Finally, for library data literacy education in the ChatGPT era, it is proposed a data literacy education scheme including seven components such as data understanding, data generation, data collection, data verification, data management, data use and sharing, and data ethics. In conclusion, since generative AI technologies such as ChatGPT are expected to have a significant impact on users' information utilization, libraries should think about the advantages, disadvantages, and problems of these technologies first, and use them as a basis for further improving library information services.

Raindrop Removal and Background Information Recovery in Coastal Wave Video Imagery using Generative Adversarial Networks (적대적생성신경망을 이용한 연안 파랑 비디오 영상에서의 빗방울 제거 및 배경 정보 복원)

  • Huh, Dong;Kim, Jaeil;Kim, Jinah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.5
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose a video enhancement method using generative adversarial networks to remove raindrops and restore the background information on the removed region in the coastal wave video imagery distorted by raindrops during rainfall. Two experimental models are implemented: Pix2Pix network widely used for image-to-image translation and Attentive GAN, which is currently performing well for raindrop removal on a single images. The models are trained with a public dataset of paired natural images with and without raindrops and the trained models are evaluated their performance of raindrop removal and background information recovery of rainwater distortion of coastal wave video imagery. In order to improve the performance, we have acquired paired video dataset with and without raindrops at the real coast and conducted transfer learning to the pre-trained models with those new dataset. The performance of fine-tuned models is improved by comparing the results from pre-trained models. The performance is evaluated using the peak signal-to-noise ratio and structural similarity index and the fine-tuned Pix2Pix network by transfer learning shows the best performance to reconstruct distorted coastal wave video imagery by raindrops.