• Title/Summary/Keyword: Generative Models

Search Result 180, Processing Time 0.031 seconds

A comparison of synthetic data approaches using utility and disclosure risk measures (유용성과 노출 위험성 지표를 이용한 재현자료 기법 비교 연구)

  • Seongbin An;Trang Doan;Juhee Lee;Jiwoo Kim;Yong Jae Kim;Yunji Kim;Changwon Yoon;Sungkyu Jung;Dongha Kim;Sunghoon Kwon;Hang J Kim;Jeongyoun Ahn;Cheolwoo Park
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.141-166
    • /
    • 2023
  • This paper investigates synthetic data generation methods and their evaluation measures. There have been increasing demands for releasing various types of data to the public for different purposes. At the same time, there are also unavoidable concerns about leaking critical or sensitive information. Many synthetic data generation methods have been proposed over the years in order to address these concerns and implemented in some countries, including Korea. The current study aims to introduce and compare three representative synthetic data generation approaches: Sequential regression, nonparametric Bayesian multiple imputations, and deep generative models. Several evaluation metrics that measure the utility and disclosure risk of synthetic data are also reviewed. We provide empirical comparisons of the three synthetic data generation approaches with respect to various evaluation measures. The findings of this work will help practitioners to have a better understanding of the advantages and disadvantages of those synthetic data methods.

Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure (토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식)

  • Pyeong-Gon Jung;Young-Il Lim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.123-141
    • /
    • 2023
  • A sufficient amount of data with quality is needed for training artificial neural networks (ANNs). However, developing ANN models with a small amount of data often appears in engineering fields. This paper presented an ANN model to improve prediction performance of the ammonia emission amount with 83 data. The ammonia emission rate included eleven inputs and two outputs (maximum ammonia loss, Nmax and time to reach half of Nmax, Km). Categorical input variables were transformed into multi-dimensional equal-distance variables, and 13 data were added into 66 training data using a generative adversarial network. Hyperparameters (number of layers, number of neurons, and activation function) of ANN were optimized using Gaussian process. Using 17 test data, the previous ANN model (Lim et al., 2007) showed the mean absolute error (MAE) of Km and Nmax to 0.0668 and 0.1860, respectively. The present ANN outperformed the previous model, reducing MAE by 38% and 56%.

Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit (Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석)

  • Hye-In Na;Byeong-Hee Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT, as a representative chatbot leveraging generative artificial intelligence technology, is used valuable not only in scientific and technological domains but also across diverse sectors such as society, economy, industry, and culture. This study conducts an explorative analysis of user sentiments and needs for ChatGPT by examining global social media discourse on Reddit. We collected 10,796 comments on Reddit from December 2022 to August 2023 and then employed keyword analysis, sentiment analysis, and need-mining-based topic modeling to derive insights. The analysis reveals several key findings. The most frequently mentioned term in ChatGPT-related comments is "time," indicative of users' emphasis on prompt responses, time efficiency, and enhanced productivity. Users express sentiments of trust and anticipation in ChatGPT, yet simultaneously articulate concerns and frustrations regarding its societal impact, including fears and anger. In addition, the topic modeling analysis identifies 14 topics, shedding light on potential user needs. Notably, users exhibit a keen interest in the educational applications of ChatGPT and its societal implications. Moreover, our investigation uncovers various user-driven topics related to ChatGPT, encompassing language models, jobs, information retrieval, healthcare applications, services, gaming, regulations, energy, and ethical concerns. In conclusion, this analysis provides insights into user perspectives, emphasizing the significance of understanding and addressing user needs. The identified application directions offer valuable guidance for enhancing existing products and services or planning the development of new service platforms.

What Concerns Does ChatGPT Raise for Us?: An Analysis Centered on CTM (Correlated Topic Modeling) of YouTube Video News Comments (ChatGPT는 우리에게 어떤 우려를 초래하는가?: 유튜브 영상 뉴스 댓글의 CTM(Correlated Topic Modeling) 분석을 중심으로)

  • Song, Minho;Lee, Soobum
    • Informatization Policy
    • /
    • v.31 no.1
    • /
    • pp.3-31
    • /
    • 2024
  • This study aimed to examine public concerns in South Korea considering the country's unique context, triggered by the advent of generative artificial intelligence such as ChatGPT. To achieve this, comments from 102 YouTube video news related to ethical issues were collected using a Python scraper, and morphological analysis and preprocessing were carried out using Textom on 15,735 comments. These comments were then analyzed using a Correlated Topic Model (CTM). The analysis identified six primary topics within the comments: "Legal and Ethical Considerations"; "Intellectual Property and Technology"; "Technological Advancement and the Future of Humanity"; "Potential of AI in Information Processing"; "Emotional Intelligence and Ethical Regulations in AI"; and "Human Imitation."Structuring these topics based on a correlation coefficient value of over 10% revealed 3 main categories: "Legal and Ethical Considerations"; "Issues Related to Data Generation by ChatGPT (Intellectual Property and Technology, Potential of AI in Information Processing, and Human Imitation)"; and "Fear for the Future of Humanity (Technological Advancement and the Future of Humanity, Emotional Intelligence, and Ethical Regulations in AI)."The study confirmed the coexistence of various concerns along with the growing interest in generative AI like ChatGPT, including worries specific to the historical and social context of South Korea. These findings suggest the need for national-level efforts to ensure data fairness.

Research Trend analysis for Seismic Data Interpolation Methods using Machine Learning (머신러닝을 사용한 탄성파 자료 보간법 기술 연구 동향 분석)

  • Bae, Wooram;Kwon, Yeji;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.192-207
    • /
    • 2020
  • We acquire seismic data with regularly or irregularly missing traces, due to economic, environmental, and mechanical problems. Since these missing data adversely affect the results of seismic data processing and analysis, we need to reconstruct the missing data before subsequent processing. However, there are economic and temporal burdens to conducting further exploration and reconstructing missing parts. Many researchers have been studying interpolation methods to accurately reconstruct missing data. Recently, various machine learning technologies such as support vector regression, autoencoder, U-Net, ResNet, and generative adversarial network (GAN) have been applied in seismic data interpolation. In this study, by reviewing these studies, we found that not only neural network models, but also support vector regression models that have relatively simple structures can interpolate missing parts of seismic data effectively. We expect that future research can improve the interpolation performance of these machine learning models by using open-source field data, data augmentation, transfer learning, and regularization based on conventional interpolation technologies.

Application Strategies of Superintelligent AI in the Defense Sector: Emphasizing the Exploration of New Domains and Centralizing Combat Scenario Modeling (초거대 인공지능의 국방 분야 적용방안: 새로운 영역 발굴 및 전투시나리오 모델링을 중심으로)

  • PARK GUNWOO
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.19-24
    • /
    • 2024
  • The future military combat environment is rapidly expanding the role and importance of artificial intelligence (AI) in defense, aligning with the current trends of declining military populations and evolving dynamics. Particularly, in the civilian sector, AI development has surged into new domains based on foundation models, such as OpenAI's Chat-GPT, categorized as Super-Giant AI or Hyperscale AI. The U.S. Department of Defense has organized Task Force Lima under the Chief Digital and AI Office (CDAO) to conduct research on the application of Large Language Models (LLM) and generative AI. Advanced military nations like China and Israel are also actively researching the integration of Super-Giant AI into their military capabilities. Consequently, there is a growing need for research within our military regarding the potential applications and fields of application for Super-Giant AI in weapon systems. In this paper, we compare the characteristics and pros and cons of specialized AI and Super-Giant AI (Foundation Models) and explore new application areas for Super-Giant AI in weapon systems. Anticipating future application areas and potential challenges, this research aims to provide insights into effectively integrating Super-Giant Artificial Intelligence into defense operations. It is expected to contribute to the development of military capabilities, policy formulation, and international security strategies in the era of advanced artificial intelligence.

Application of Improved Variational Recurrent Auto-Encoder for Korean Sentence Generation (한국어 문장 생성을 위한 Variational Recurrent Auto-Encoder 개선 및 활용)

  • Hahn, Sangchul;Hong, Seokjin;Choi, Heeyoul
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.157-164
    • /
    • 2018
  • Due to the revolutionary advances in deep learning, performance of pattern recognition has increased significantly in many applications like speech recognition and image recognition, and some systems outperform human-level intelligence in specific domains. Unlike pattern recognition, in this paper, we focus on generating Korean sentences based on a few Korean sentences. We apply variational recurrent auto-encoder (VRAE) and modify the model considering some characteristics of Korean sentences. To reduce the number of words in the model, we apply a word spacing model. Also, there are many Korean sentences which have the same meaning but different word order, even without subjects or objects; therefore we change the unidirectional encoder of VRAE into a bidirectional encoder. In addition, we apply an interpolation method on the encoded vectors from the given sentences, so that we can generate new sentences which are similar to the given sentences. In experiments, we confirm that our proposed method generates better sentences which are semantically more similar to the given sentences.

Integrated Circuit Implementation and Characteristic Analysis of a CMOS Chaotic Neuron for Chaotic Neural Networks (카오스 신경망을 위한 CMOS 혼돈 뉴런의 집적회로 구현 및 특성 해석)

  • Song, Han-Jeong;Gwak, Gye-Dal
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.45-53
    • /
    • 2000
  • This paper presents an analysis of the dynamical behavor in the chaotic neuron fabricated using 0.8${\mu}{\textrm}{m}$ single poly CMOS technology. An approximated empirical equation models for the sigmoid output function and chaos generative block of the chaotic neuron are extracted from the measurement data. Then the dynamical responses of the chaotic neuron such as biurcation diagram, frequency responses, Lyapunov exponent, and average firing rate are calculated with numerical analysis. In addition, we construct the chaotic neural networks which are composed of two chaotic neurons with four synapses and obtain bifurcation diagram according to synaptic weight variation. And results of experiments in the single chaotic neuron and chaotic neural networks by two neurons with the $\pm$2.5V power supply and sampling clock frequency of 10KHz are shown and compared with the simulated results.

  • PDF

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

Exploring the Effectiveness of GAN-based Approach and Reinforcement Learning in Character Boxing Task (캐릭터 복싱 과제에서 GAN 기반 접근법과 강화학습의 효과성 탐구)

  • Seoyoung Son;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.4
    • /
    • pp.7-16
    • /
    • 2023
  • For decades, creating a desired locomotive motion in a goal-oriented manner has been a challenge in character animation. Data-driven methods using generative models have demonstrated efficient ways of predicting long sequences of motions without the need for explicit conditioning. While these methods produce high-quality long-term motions, they can be limited when it comes to synthesizing motion for challenging novel scenarios, such as punching a random target. A state-of-the-art solution to overcome this limitation is by using a GAN Discriminator to imitate motion data clips and incorporating reinforcement learning to compose goal-oriented motions. In this paper, our research aims to create characters performing combat sports such as boxing, using a novel reward design in conjunction with existing GAN-based approaches. We experimentally demonstrate that both the Adversarial Motion Prior [3] and Adversarial Skill Embeddings [4] methods are capable of generating viable motions for a character punching a random target, even in the absence of mocap data that specifically captures the transition between punching and locomotion. Also, with a single learned policy, multiple task controllers can be constructed through the TimeChamber framework.