• Title/Summary/Keyword: Generation of heat

Search Result 1,817, Processing Time 0.027 seconds

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

DISTRIBUTION AND PHYSIOLOGICAL CHARACTERISTICS OF BACILLUS CEREUS IN RICE AND RICE PRODUCTS (미반류에 있어서 Bacillus cereus균의 분포와 생리적특성에 관한 연구)

  • LEE Myeong-Sook;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.163-171
    • /
    • 1980
  • Recently, Bacillus has been identified as one of food poisoning bacteria especially in products of cereal foods in foreign countries. Therefore, the quantitative distribution of Bacillus cereus in market foods, its physiological characteristics, growth rate by temperature and heat resistance of its spore were examined. Thirty two samples of cooked rice, 20 samples of kimbab(cooked rice rolled with laver), 23 samples of rice cake, 13 samples of rice ana 13 samples of barley were collected from restaurents and food stores in Busan, Korea during the period from May to November in 1980. Forty samples of 101 samples submitted to the test appeared positive for Bacillus cereus showing abut $40\%$ in detection ratio. Detection ratio of Bacillus cereus was higher than $50\%$ in barley and rice, and about $30\%$ in rice products. Average Bacillus cereus content of in the samples was $2.6\times10^6/g$ in cooked rice, $2.3\times10^6/g$in kimbab, $4.9\times10^4/g$ in rice cake while that in rice and barley was about $10^3/g$. The result of biochemical tests of the bacterium was $100\%$ positive in catalase, egg yolk reaction, gelatin hydrolysis and glucose fermentation, $100\%$ negative in xylose, arabinose and mannitol oxidation, about $90\%$ positive in acetoin production, $80.0\%$ positive in nitrate reduction and citrate utilization and $55.0\%$ positive in starch hydrolysis test. Isolation ratio of Bacillus ceresus which showed haemolysis positive and starch hydrolysis negative results, was about $38\%$ in 40 strains examined. It is known that those strains has a close relation to food poisoning accident. Growth rate and generation time of Bacillus cereus isolated from the cooked rice were $0.34hr^{-1},\;2.02hr\;at\;20^{\circ}C,\;0.73hr^{-1},\;0.95hr\;at\;30^{\circ}C\;and\;0.49hr^{-1},\;1.44\;hr\;at\;40^{\circ}C$ respectively. Heat resistance value of Bacillus cereus spores suspended in phosphate buffer solution was $D_{90}=29.0min,\;D_{95}=8.7min,\;D_{98}=3.7\;min\;and\;D_{101}=2.3\;min(z=10.5)$.

  • PDF

Neutrophil Chemotactic Activity in Bronchoalveolar Lavage Fluid of the Rats Exposed to Hyperoxia (고농도의 산소에 노출시킨 쥐의 기관지폐포세척액내 호중구 화학주성활성화도)

  • Song, Jeong Sup;Lee, Sook Young;Moon, Wha Sik;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.4
    • /
    • pp.547-557
    • /
    • 1996
  • Background : An excessive accumulation of neutrophils in lung tissue has been known to play an important role in mediating the tissue injury among the adult respiratory distress syndrome, idiopathic pulmonary fibrosis and cystic fibrosis by releasing toxic oxygen radicals and proteolytic enzymes. Therefore, it is important to understand a possible mechanism of neutrophil accumulation in lung tissue. In many species, exposure to hyperoxic stimuli can cause changes of lung tissues very similar to human adult respiratory distress syndrome and neutrophils are also functioning as the main effector cells in hyperoxic lung injury. The purpose of the present study was to examine whether neutrophils function as a key effector cell and to study the nature of possible neutrophil chemotactic factors found in bronchoalveolar lavage fluid from the hyperoxia exposed rats. Methods : We exposed the rats to the more than 95% oxygen for 24, 48, 60 arid 72 hours and bronchoalveolar lavage(BAL) was performed. Neutrophil chemotactic activity was measured from the BAT- fluid of each experimental groups. We also evaluated the molecular weight of neutrophil chemotactic tractors using fast performance liquid chromatography and characterized the substances by dialyzer membrane and heat treatment. Results : 1) The neutrophil proportions in bronchoalveolar lavage fluid began to rise from 48 hours after oxygen exposure, and continued to be significantly increased with exposure times. 2) chemotactic index for neutrophils in lung lavages from rats exposed to hyperoxia was significantly higher in 48 hours group than in control group, and was significantly increased with exposure time. 3) No deaths occured until after 48 hours of exposure. However, mortality rates were increased to 33.3 % in 60 hours group and 81.3 % in 72 fours group. 4) Gel filtration using fast performance liquid chromatography disclosed two peaks of neutrophil chemotactic activity in molecular weight of 104,000 and 12,000 daltons. 5) Chemotactic indices of bronchoalveolar lavage fluid were significantly deceased when bronchoalveolar lavage fluid was treated with heat ($56^{\circ}C$ for 30 min or $100^{\circ}C$ for 10 min) or dialyzed (dialyzer membrane molecular weight cut off : 12,000 daltons). Conclusion : These results suggested that the generation of neutrophil chemotactic factor and subsequent neutrophil influx into the lungs are playing an important roles in hyperoxia-induced acute lung injury. Neutrophil chemotactic factor in the lung lavage fluids consisted of several distinct components having different molecular weight and different physical characteristics.

  • PDF

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.

Bacterial Quality of Fish Meat Paste Products and Isolation of Thermoduric Bacteria (어육연제품의 세균학적 품질 및 내열성세균의 특성에 관한 연구)

  • 김동판;장동석;김성준
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.409-415
    • /
    • 1985
  • This study has been carried out in order to investigate the bacterial quality of fish meat paste products and the characteristics of isolated thermodurics from the products. Twenty samples of crab-flavored fish stick (Kematsal), 23 samples of plate fish meat paste (Panomuk, Kamaboko), 5 samples of fried fish meat paste (Tigimomuk), 2 samples of roasted fish meat paste (Puduromuk, Chikuwa), 20 samples of fish sausage were collected from processing plants and supermarkets in Pusan, Korea during the period from May to October in 1984. The results obtained are as follows. Amont the samples collected from supermarkets, roasted fish meat paste and fried fish meat paste marked hish counts in coliforms and fungi while very low in the samples of crab-flavored fish stick and plate fish meat paste. Salmonella was not detected in all the samples examined and Staphylococcus aureus was detected only in fried fish meat paste, Thermoduric bacteria were detected less than 10$^2$/g in the samples of crab-flavored fish stick and plate fish meat paste, which might come from subsidiary materials such as starch and seasonings. Among the isolated bacteria, distribution of the proteolytics were more than 87% and the lipolytics were less than 20%. Gram positive bacteria was more than 70% in crab-flavored fish stick and plate fish meat paste, 47.3% in fried fish meat paste. And rod in shape was almost more than 90% in all the samples. The most heat resistant bacterium isolated from the samples was identified as a Bacillus licheniformis(named B. licheniformis CR-11). The strain showed strong proteolytic activity and also grew well at above 2$0^{\circ}C$. The growth rate and generation time of CR-11 strain were 0.31 hr$^{-1}$ , 2.24 hr at 2$0^{\circ}C$, 0.64 hr$^{-1}$ , 1.09 hr at 3$0^{\circ}C$ and 0.78 hr$^{-1}$ , 0.89 hr at 35$^{\circ}C$. Heat resistance value of the spores of CR-11 strain suspended in phosphate buffer solution was D$_{85}$ $^{\circ}C$=41.9 min, D$_{90}$ $^{\circ}C$=27.9 min, D$_{95}$ $^{\circ}C$=10.2 min, D$_{100}$ $^{\circ}C$=4.3 min (Z=13.8$^{\circ}C$)

  • PDF

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.

Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea (북한강 의암호의 수질 변동성에 대한 강우·수문학적 비교분석)

  • Hwang, Soon-Jin;Sim, Yeon Bo;Choi, Bong-Geun;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Park, Myung-Hwan;Lee, Su-Woong;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.29-45
    • /
    • 2017
  • This study explored spatiotemporal variability of water quality in correspondence with hydro-meteorological factors in the four stations of Euiam Reservoir located in the upstream region of the North-Han River from May 2012 to December 2015. Seasonal effect was apparent in the variation of water temperature, DO, electric conductivity and TSS during the study period. Stratification in the water column was observed in the near dam site every year and vanished between August and October. Increase of nitrogen nutrients was observed when inflowing discharge was low, while phosphorus increase was distinct both during the early season with increase of inflowing discharge and the period of severe draught persistent. Duration persisting high concentration of Chl-a (>$25mg\;m^{-3}$: the eutrophic status criterion, OECD, 1982) was 1~2 months of the whole year in 2014~2015, while it was almost 4 months in 2013. Water quality of Euiam Reservoir appeared to be affected basically by geomorphology and source of pollutants, such as longitudinally linked instream islands and Aggregate Island, inflowing urban stream, and wastewater treatment plant discharge. While inflowing discharge from the dams upstream and outflow pattern causing water level change seem to largely govern the variability of water quality in this particular system. In the process of spatiotemporal water quality change, factors related to climate (e.g. flood, typhoon, abruptly high rainfall, scorching heat of summer), hydrology (amount of flow and water level) might be attributed to water pulse, dilution, backflow, uptake, and sedimentation. This study showed that change of water quality in Euiam Reservoir was very dynamic and suggested that its effect could be delivered to downstream (Cheongpyeong and Paldang Reservoirs) through year-round discharge for hydropower generation.

On the Persistence of Warm Eddies in the East Sea (동해 난수성 에디의 장기간 지속에 관하여)

  • JIN, HYUNKEUN;PARK, YOUNG-GYU;PAK, GYUNDO;KIM, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.318-331
    • /
    • 2019
  • In this study, comparative analysis is performed on the long-term persisted warm eddies that were generated in 2003 (WE03) and in 2014 (WE14) over the East Sea using the HYCOM reanalysis data. The overshooting of the East Korea Warm Current (EKWC) was appeared during the formation period of those warm eddies. The warm eddies were produced in the shallow Korea Plateau region through the interaction of the EKWC and the sub-polar front. In the interior of the both warm eddies, a homogeneous water mass of about $13^{\circ}C$ and 34.1 psu were generated over the upper 150 m depth by the winter mixing. In 2004, the next year of the generation of the WE03, the amount of the inflow through the western channel of the Korea Strait was larger, while the inflow was lesser than its climatology during 2015 corresponding to the development period of the WE14. The above results suggest that the heat and salt are supplied in the warm eddies through the Tsushima Warm Current (TWC), however the amount of the inflow through the Korea Strait has negligible impact on the long-term persistency of the warm eddies. Both of the warm eddies were maintained more than 18 months near Ulleung island, while they have no common feature on the pathways. In the vicinity of the Ulleung basin, large and small eddies are continuously created due to the meandering of the EKWC. The long-term persisted warm eddies in the Ulleung Island seem to be the results of the interaction between the pre-existed eddies located south of the sub-polar front and fresh eddies induced by the meanderings of the EKWC. The conclusion is also in line with the fact that the long-term persisted warm eddies were not always created when the overshooting of the EKWC was appeared.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

The Effect of Heating Rate by Ohmic Heating on Rheological Property of Corn Starch Suspension (Ohmic Heating에 의한 가열속도 변화가 옥수수전분의 물성특성에 미치는 영향)

  • Lee, Seok-Hun;Jang, Jae-Kweon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.438-442
    • /
    • 2005
  • Granule swelling is essential phenomenon of starch gelatinization in excess water, and characteristic of heated starch dispersion depends largely on size and distribution of swelled starch granule. Although swelling characteristic of starch granules depends on type of starch, heating rate, and moisture content, influence of heating rate on swelling phenomenon of starch granule has not been fully discussed, because constant heating rate of starch dispersion cannot be obtained by conventional heating method. Ohmic heating, electric-resistant heat generation method, applies alternative current to food materials, through which heating rate can be easily controlled precisely and conveniently at wide range of constant heating rates. Starch dispersion heated at low heating rates below $7.5^{\circ}C/min$ showed Newtonian fluid behavior, whereas showed pseudoplastic behavior at heating rates above $16.4^{\circ}C/min$. Apparent viscosity of starch dispersion increased linearly with increasing heating rate, and yield stress was dramatically increased at heating rates above $16.4^{\circ}C/min$. Average diameter of corn starch granules during ohmic heating was dramatically increased from $30.97\;to\;37.88\;{\mu}m$ by increasing heating rate from $0.6\;to\;16.4^{\circ}C/min$ (raw corn starch: $13.7\;{\mu}m$). Hardness of starch gel prepared with 15% corn starch dispersion after heating to $90^{\circ}C$ at different heating rates decreased gradually with increasing heating rate, then showed nearly constant value from $9.4\;to\;23.2^{\circ}C/min$. Hardness increased with increase of heating rate higher than $23.2^{\circ}C/min$.