• Title/Summary/Keyword: Generation of heat

Search Result 1,829, Processing Time 0.029 seconds

Computational Analysis of the Heat/Moisture Characteristics and Heat Load of Underground Structures (열.수분 동시이동 모델을 이용한 지하구조물 및 주변지반의 열수분성상 예측에 관한 연구)

  • Park, Kyung-Soon;Son, Won-Tug
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.901-905
    • /
    • 2008
  • This study was conducted to clarify the heat load characteristics and heat and moisture behavior of underground structures. The authors achieved this by carrying out a numerical analysis using simple heat diffusion and simultaneous heat and moisture transfer equations based on measurement data. This paper presents the results of a numerical analysis on the heat load characteristics and heat and moisture behavior of an underground basement and its surrounding ground under a condition of internal heat generation. The authors found it difficult to predict the heat behavior and heat load of the underground basement by simple heat diffusion alone. Accurate prediction of the thermal environment and heat load requires careful consideration of the influences of moisture and precipitation

  • PDF

Thermal changes during implant site preparation with a digital surgical guide and slot design drill: an ex vivo study using a bovine rib model

  • Choi, Yoon-Sil;Oh, Jae-Woon;Lee, Young;Lee, Dong-Woon
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.5
    • /
    • pp.411-421
    • /
    • 2022
  • Purpose: In this study, we aimed to evaluate the degree of heat generation when a novel drill design with an irrigation slot was used with metal sleeve-free (MF) and metal sleeve-incorporated (MI) surgical guides in an environment similar to that of the actual oral cavity. Methods: A typodont with a missing mandibular right first molar and 21 bovine rib blocks were used. Three-dimensional-printed MF and MI surgical guides, designed for the placement of internal tapered implant fixtures, were used with slot and non-slot drills. The following groups were compared: group 1, MI surgical guide with slot drill; group 2, MI surgical guide with a non-slot drill; and group 3, MF surgical guide with a slot drill. A constant-temperature water bath at 36℃ was used. The drilling was performed in 6 stages, and the initial, highest, and lowest temperatures of the cortical bone were measured at each stage using a non-contact infrared thermometer. Results: There were no temperature increases above the initial temperature in any drilling procedure. The only significant difference between the non-slot and slot groups was observed with the use of the first drill in the MI group, with a higher temperature in the non-slot group (P=0.012). When the heat generation during the first and the second drilling was compared in the non-slot group, the heat generation during the first drilling was significantly higher (P<0.001), and there was no significant difference in heat generation between the drills in the slot group. Conclusions: Within the limitations of this study, implant-site preparation with the surgical guide showed no critical increase in the temperature of the cortical bone, regardless of whether there was a slot in the drill. In particular, the slotted drill had a cooling effect during the initial drilling.

Hot and average fuel sub-channel thermal hydraulic study in a generation III+ IPWR based on neutronic simulation

  • Gholamalishahi, Ramin;Vanaie, Hamidreza;Heidari, Ebrahim;Gheisari, Rouhollah
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1769-1785
    • /
    • 2021
  • The Integral Pressurized Water Reactors (IPWRs) as the innovative advanced and generation-III + reactors are under study and developments in a lot of countries. This paper is aimed at the thermal hydraulic study of the hot and average fuel sub-channel in a Generation III + IPWR by loose external coupling to the neutronic simulation. The power produced in fuel pins is calculated by the neutronic simulation via MCNPX2.6 then fuel and coolant temperature changes along fuel sub-channels evaluated by computational fluid dynamic thermal hydraulic calculation through an iterative coupling. The relative power densities along the fuel pin in hot and average fuel sub-channel are calculated in sixteen equal divisions. The highest centerline temperature of the hottest and the average fuel pin are calculated as 633 K (359.85 ℃) and 596 K (322.85 ℃), respectively. The coolant enters the sub-channel with a temperature of 557.15 K (284 ℃) and leaves the hot sub-channel and the average sub-channel with a temperature of 596 K (322.85 ℃) and 579 K (305.85 ℃), respectively. It is shown that the spacer grids result in the enhancement of turbulence kinetic energy, convection heat transfer coefficient along the fuel sub-channels so that there is an increase in heat transfer coefficient about 40%. The local fuel pin temperature reduction in the place and downstream the space grids due to heat transfer coefficient enhancement is depicted via a graph through six iterations of neutronic and thermal hydraulic coupling calculations. Working in a low fuel temperature and keeping a significant gap below the melting point of fuel, make the IPWR as a safe type of generation -III + nuclear reactor.

Conjugated heat transfer on convection heat transfer from a circular tube in cross flow (원관 주위의 대류 열전달에 대한 복합 열전달)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.523-534
    • /
    • 1998
  • The convection heat transfer on horizontal circular tube is studied as a conjugated heat transfer problem. With uniform heat generation in a cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer are investigated for the case of forced convection around horizontal circular tube in cross flow of air and water. Non-dimensional conjugation parameter $ K^*$ which can be deduced from the governing energy differential equation should be used to express the effect of circumferential wall heat conduction. Two-dimensional temperature distribution$ T({\gamma,\theta})$ is presented. The influence of circumferential wall heat conduction is demonstrated on graph of local Nusselt number.

  • PDF

A Combustion Instability Analysis of a Model Gas Turbine Combustor for Co-generation (열병합발전용 모델 가스터빈 연소기의 연소불안정 해석)

  • Cha, Dong-Jin;Shin, Dong-Myung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1449-1457
    • /
    • 2009
  • Combustion instability is a major issue in design of co-generation gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of co-generation gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use not only the advantages of the transfer matrix method but also well established classic control theories. The approach is applied to a simple co-generation gas turbine combustion system, which shows the validity and effectiveness of the approach.

  • PDF

A Study on Economic Analysis for Hotel Introduction of Co-generation System (호텔에 열병합 도입에 따른 경제성 분석에 관한 연구)

  • 김응상
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.210-215
    • /
    • 2002
  • In respect of global environment protection and efficient utilization of energy, co-generation systems, which have greatly higher efficiency than the other generations, have been developed and put to practical use. Assuming that the co-generation system would be operating in Park Hotel, this paper calculates the difference between the heat and electricity rates by the conventional method and the co-generation system, considers the cost of new investment and analyzes introduction economics based on the return on investment. The introduction is turned out to be recommendable, since the return of investment for co-gen oration equipment is about ten years when the co-generation profits in heat and electricity rate. Additionally, accounting for interest rate drop, improvement of environmental matters or electricity rate increase, it is shown to be even more economical.

Effect of Circumferential Wall Heat Conduction on Boundary Conditions for Convection Heat Transfer from a Circular Tube in Cross Flow (원관 주위의 대류 열전달에서 경계조건에 대한 원주방향 열전도의 영향)

  • 이상봉;이억수;김시영
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • With uniform heat generation from the inner surface of the cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer is investigated for the case of forced convection around horizontal circular tube in cross flow of air. The wall conduction number which can be deduced from the governing energy equation should be used to express the effect of circumferential wall heat conduction. It is demonstrated that the circumferential wall heat conduction influences local Nusselt numbers of one-dimensional and two-dimensional solutions.

  • PDF

Analysis and Experiment Verification of Heat Generation Factor of High Power 18650 Lithium-ion Cell (고출력 18650 리튬이온 배터리의 발열인자 해석 및 실험적 검증)

  • Kang, Taewoo;Yoo, Kisoo;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.365-371
    • /
    • 2019
  • This study shows the feasibility of the parameter of the 1st RC parallel equivalent circuit as a factor of the heat generation of lithium-ion cell. The internal resistance of a lithium-ion cell consists of ohmic and polarization resistances. The internal resistances at various SOCs of the lithium-ion cell are obtained via an electrical characteristic test. The internal resistance is inversely obtained through the amount of heat generated during the experiment. By comparing the resistances obtained using the two methods, the summation of ohmic and polarization resistances is identified as the heating factor of lithium-ion battery. Finally, the amounts of heat generated from the 2C, 3C, and 4C-rate discharge experiments and the COMSOL multiphysics simulation using the summation of ohmic and polarization resistances as the heating parameter are compared. The comparison shows the feasibility of the electrical parameters of the 1st RC parallel equivalent circuit as the heating factor.

Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat (저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

A Study on Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle by Heat Recovery (열회수에 따른 고온 태양열 열화학 싸이클의 수소 생산에 관한 연구)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.13-22
    • /
    • 2017
  • Two-step water splitting thermochemical cycle with $CeO_2/ZrO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2/ZrO_2$ foam device depending on heat recovery of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2/ZrO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. Resultantly, the quantity of hydrogen generation increased by 52.02% when the carrier gas of Thermal-Reduction step is preheated to $200^{\circ}C$ and, when the $N_2/steam$ is preheated to $200^{\circ}C$ in the Water-Decomposition step, the quantity of hydrogen generation increased by 35.85%. Therefore, it is important to retrieve the heat from the highly heated gases discharged from each of the reaction spaces in order to increase the reaction temperature of each of the stages and thereby increasing the quantity of hydrogen generated through this.