• Title/Summary/Keyword: Generation mean.

Search Result 802, Processing Time 0.028 seconds

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan;Bai, Hang;Huang, Mingfeng;Duan, Zhiyong;Bian, Rong
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.165-183
    • /
    • 2020
  • The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment

  • Rajabi, Mehdi;Shamshirsaz, Mahnaz;Naraghi, Mahyar
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.361-369
    • /
    • 2017
  • Electromechanical impedance method as an efficient tool in Structural Health Monitoring (SHM) utilizes the electromechanical impedance of piezoelectric materials which is directly related to the mechanical impedance of the host structure and will be affected by damages. In this paper, electromechanical impedance of piezoelectric patches attached to simply support rectangular plate is determined theoretically and experimentally in order to detect damage. A pairs of piezoelectric wafer active sensor (PWAS) patches are used on top and bottom of an aluminum plate to generate pure bending. The analytical model and experiments are carried out both for undamaged and damaged plates. To validate theoretical models, the electromechanical impedances of PWAS for undamaged and damaged plate using theoretical models are compared with those obtained experimentally. Both theoretical and experimental results demonstrate that by crack generation and intensifying this crack, natural frequency of structure decreases. Finally, in order to evaluate damage severity, damage metrics such as Root Mean Square Deviation (RMSD), Mean Absolute Percentage Deviation (MAPD), and Correlation Coefficient Deviation (CCD) are used based on experimental results. The results show that generation of crack and crack depth increasing can be detectable by CCD.

BREEDING EXPERIMENT ON MUTATION INDUCTION BY IRRADIATION (2) Effects of X-ray and Thermal Neutron Irradiation on Dry Seeds of Chinese Cabbage and Radish.

  • Kim, Dawng Woo;Kim, Yang Choon;Cho, Mi Kyung
    • Journal of Plant Biology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1962
  • 1) Germination rate was rather irregular than decreasing as increasing dose of radiation and there were no differences between Kyong-Sam and Chuong-Bang of Chinese cabbage. 2) In R1 generation, abnormal leaves from seedling of irradiated seeds were observed. These were more apparent in X-ray irradiation than in thermal neutron. 3) Seedling height was inhibited with increasing dose of X-ray and thermal neutrons. Growth inhibition was more remarkable in X-ray than in thermal neutron. Kyong-Sam demonstrated more sensitivity than Chyong-Bang in both X-ray and thermal neutron. 4) Seedling height produced from seeds subjected to thermal neutrons showed small variation around its mean value, while in X-irradiation there was a greater deviaton from the mean value. 5) Fertility was decreased as increasing with dose, while the frequency of abortive pollen was increased. There were variability of the fertility and frequency of abortive pollen among plants or branches of a plant. 6) The mutants were obtained more in thermal neutron irradiation than in X-ray. The types of mutations obtained in Chinese radish of R2 generation were abnormal leaf, densely glowing leaf, degeneration in growing point and dwarf. The maximum frequency of phenotypic mutations was abnormal leaf mutation.

  • PDF

A Sensitivity and Performance Analysis for Torque Mode Switching on 2MW Direct Drive Wind Turbine Generator (2MW급 직접구동형 풍력발전기의 풍황 민감도 및 토크모드 스위칭 성능 해석)

  • Rho, Joo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1455-1460
    • /
    • 2014
  • Wind turbine generators were designed on general regulations of wind condition. At real situations, it could be different from the design conditions. There are many control methods and definitions of transient region, because an efficient wind turbine generator control logic is the important matter in generator performance and annual energy production at real conditions. In this document, the power generation sensitivity for wind speed and turbulence intensities was defined to know the sensitive transient region. Wind conditions are applied for the ranges of 7~10m/s mean wind speed and 14~20% turbulence intensity. The sensibility of HR-D86 wind generator was increased in transient region(8~10m/s) on power curve diagram through a torque control to a pitch control. And then GH-bladed simulations was performed for performance analysis of the torque mode switching in transient region on 2MW direct drive wind generator(HR-D86) which is designed IEC class II for onshore. Through the sensitivity and performance analysis, the sensitivity for real wind condition could be the performance index for an wind generator. And the torque mode switching in transient region can increase the mean power generation on HR-D86 wind turbine generator.

Estimation of wind power generation of micro wind turbine on the roof of high rise buildings in urban area (도심 고층건물 지붕에서의 소형 풍력발전기 발전량 예측)

  • Choi, Hyung-Sik;Chang, Ho-Nam
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.21-27
    • /
    • 2009
  • Potential yield of micro wind turbine on the roof of urban high rise buildings is estimated. Urban wind profile is modeled as logarithmic profile above the mean building height with roughness length 0.8, displacement 7.5 m. Mean wind velocity from the meteorological agency data at the hight of 50m is used. Wind velocity changes are simulated on the rectangular roof of 26, 45, 53 degree pitch and the circular roof by computational fluid dynamics and RNG k-$\varepsilon$ turbulence models. Wind velocity increased approximately by a factor of the order of 270 % on the 26 degree pitched roof. In the 100 m and 200 m high buildings, wind enhancement is greater at the front side than at the center of the building. In the building arrangement model wind velocity changes abruptly and it becomes wind gusts. When commercial wind turbines are installed on the building roof, average power and annual power generation enhanced by 3~4 times than normal wind velocity at 50m and 6 kw wind turbine can generate 1053 kwh per month on the 26 degree pitched roof at 50m height and sufficiently supply electrical power with 15 household for common electrical use and food waste disposer. However, power output will vary significantly by the wind conditions in the order of $\pm$ 20 %.

  • PDF

Negative Effects of Inbreeding of Artificially Bottlenecked Drosophila melanogaster Populations

  • Kim, Baek-Jun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.2
    • /
    • pp.108-113
    • /
    • 2021
  • Detrimental effects of inbreeding have been studied by many researchers for a long time. However, only a few studies have shown the occurrence of inbreeding depression due to evolutionary changes as a purging process. In this study, two different populations (inbreeding and outbreeding) of Drosophila melanogaster were compared to assess inbreeding effects on artificial population bottlenecks. For inbreeding conditions, a couple of D. melanogaster (one virgin and one male) were selected from an inbred population and cultured in a vial. For outbreeding conditions, a couple of D. melanogaster were selected from different populations and cultured in a vial. There were significant differences in body lengths of adults, but not in other parameters such as the total number of adults, the rate of survival, and the rate of wing mutants. The mean body length of adults of outbreeding populations was longer than that of inbreeding populations in the first generation (G1; P = 0.004), but not in the second generation (G2; P = 0.066). Although the other three parameters (total number of adults, rate of survival, and rate of wing mutants) showed differences in their mean values between inbreeding and outbreeding populations, these differences were not statistically significant. This might be due to genetic purging. This study demonstrated one additional experimental case related to inbreeding depression in artificial bottlenecked populations. Further studies are necessary to confirm the clear interaction between inbreeding depression and genetic purging using more generations and replicates (or samples) of D. melanogaster.

Numerical Evaluations of the Effect of Feature Maps on Content-Adaptive Finite Element Mesh Generation

  • Lee, W.H.;Kim, T.S.;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.8-16
    • /
    • 2007
  • Finite element analysis (FEA) is an effective means for the analysis of bioelectromagnetism. It has been successfully applied to various problems over conventional methods such as boundary element analysis and finite difference analysis. However, its utilization has been limited due to the overwhelming computational load despite of its analytical power. We have previously developed a novel mesh generation scheme that produces FE meshes that are content-adaptive to given MR images. MRI content-adaptive FE meshes (cMeshes) represent the electrically conducting domain more effectively with far less number of nodes and elements, thus lessen the computational load. In general, the cMesh generation is affected by the quality of feature maps derived from MRI. In this study, we have tested various feature maps created based on the improved differential geometry measures for more effective cMesh head models. As performance indices, correlation coefficient (CC), root mean squared error (RMSE), relative error (RE), and the quality of cMesh triangle elements are used. The results show that there is a significant variation according to the characteristics of specific feature maps on cMesh generation, and offer additional choices of feature maps to yield more effective and efficient generation of cMeshes. We believe that cMeshes with specific and improved feature map generation schemes should be useful in the FEA of bioelectromagnetic problems.

A study on the estimation of unit load generation and discharge from livestock resources of piggery (돼지 축분자원화물의 발생 및 배출부하 원단위 산정에 관한 연구)

  • Han, Gee-Bong;Kang, Young-Hee;Yoon, Ji-Hyun;Rim, Jay-Myoung;Won, Chul-Hee;Choi, Seung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2006
  • In this study, the characterization of unit load generation and discharge from various type stall of piggery was conducted by investigation and analysis of contaminants loading from piggery urine, manure and wastewater. The results are summarized as follows: The unit load generation of filth increases as piggery grow older, but there was not large enough difference among those values of unit load evaluated for various stall types if mean values of each type of stall are considered. The generation amounts of manure and urine were total 4.57kg/head/d of 1.49kg manure/head/d and 3.08kg urine/head/d with consideration of 3 seasons and live weight. The finalized mean unit load generation of filth were estimated at BOD 199.5g/head/d, $COD_{cr}\;413.5g/head/d$, T-N 27.8g/head/d, T-P 5.3g/head/d with consideration of seasons and the type of stalls. The wastewater unit loads discharged from cement type stall were estimated at BOD 31.3g/head/d, $COD_{cr}\;95.6g/head/d$, T-N 8.9g/head/d, T-P가 3.1g/head/d. The sum of manure unit load generation considered with manure collection ratio(80%, 90%) and wastewater unit load was almost similar when compared to the unit load discharged from slurry type stall even though more or less difference were appeared according to each contaminants and parameters.

  • PDF

A Buoyant Combined Solar-Wave Power Generation and Its Application for Emergency Power Supply of Nuclear Power Plant (부유식 태양광-파력 복합발전 개념 및 원자력발전소 비상전원을 위한 응용)

  • Cha, Kyung-Ho;Kim, Jung-Taek
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents a Combined solar-wave Power Generation (CPG) concept that the CPG unit is maintained as buoyant at the level of sea water and it is also supported by a submerged tunnel, with the aim of supplying emergency electric power during the station blackout events of nuclear power plants. The CPG concept has been motivated from the 2011 Fukushima-Daiichi Accidents due to the loss of both offsite AC power and emergency diesel power caused by natural hazards such as earthquake and tsunami. The CPG is conceptualized by applying different types and different sites for emergency power generation, in order to reduce common cause failures of emergency power suppliers due to natural hazards. Thus, the CPG can provide a new mean for supplying emergency electric power during station blackout events of nuclear power plants. For this application, the CPG requirements are described with a typical configuration at the ocean side of a submerged tunnel.

The Estimation of Users' Benefit in Next Generation Urban and Rural Smart Weather Service Technique Research and Development Project (차세대 도시.농림 융합 스마트 기상서비스기술 개발 사업의 이용자 측면 편익 추정)

  • Lee, Joo Suk;Yoo, Seung Hoon
    • Journal of Korea Technology Innovation Society
    • /
    • v.16 no.3
    • /
    • pp.630-649
    • /
    • 2013
  • Korea Meteorological Administration has promoted the next generation urban and rural smart weather service project. The purpose of this project is to provide the necessary information to urban and rural districts by using the subdivided meteorological information. This study attempts to assess the value of the next generation urban and rural smart weather service project by using contingent valuation method. According to estimating result, annual mean willingness to pay per household for the next generation urban and rural smart weather service project is 2,947 won.

  • PDF