• Title/Summary/Keyword: Generation advancement

Search Result 122, Processing Time 0.02 seconds

An Interdisciplinary Approach to the Human/Posthuman Discourses Emerging From Cybernetics and Artificial Intelligence Technology (4차 산업혁명 시대의 사이버네틱스와 휴먼·포스트휴먼에 관한 인문학적 지평 연구)

  • Kim, Dong-Yoon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.836-848
    • /
    • 2019
  • This paper aims at providing a critical view over the cybernetics theory especially of first generation on which the artificial intelligence heavily depends nowadays. There has been a commonly accepted thought that the conception of artificial intelligence could not has been possible without being influenced by N. Wiener's cybernetic feedback based information system. Despite the founder of contemporary cybernetics' ethical concerns in order to avoid an increasing entropy phenomena(social violence, economic misery, wars) produced through a negative dynamics of the western modernity regarded as the most advanced form of humanism. In this civilizationally changing atmosphere, the newly born cybernetic technology was thus firmly believed as an antidote to these vices deeply rooted in humanism itself. But cybernetics has been turned out to be a self-organizing, self-controlling mechanical system that entails the possibility of telegraphing human brain (which are transformed into patterns) through the uploading of human brain neurons digitalized by the artificial intelligence embedded into computing technology. On this background emerges posthuman (or posthumanism) movement of which concepts have been theorized mainly by its ardent apostles like N. K. Hayles, Neil Bedington, Laurent Alexandre, Donna J. Haraway. The converging of NBIC Technologies leading to the opening of a much more digitalizing society has served as a catalyst to promote the posthuman representations and different narratives especially in the contemporary visual arts as well as in the study of humanities including philosophy and fictional literature. Once Bruno Latour wrote "Modernity is often defined in terms of humanism, either as a way of saluting the birth of 'man' or as a way of announcing his death. But this habit is itself modern, because it remains asymmetrical. It overlooks the simultaneous birth of 'nonhumaniy' - things, or objects, or beasts, - and the equally strange beginning of a crossed-out God, relegated to the sidelines."4) These highly suggestive ideas enable us to better understand what kind of human beings would emerge following the dazzlingly accelerating advancement of artificial intelligence technology. We wonder whether or not this newly born humankind would become essentially Homo Artificialis as a neuronal man stripping off his biological apparatus. However due to this unprecedented situation humans should deal with enormous challenges involving ethical, metaphysical, existential implications on their life.

Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology (기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론)

  • Choi, Hochang;Kwahk, Kee-Young;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.101-124
    • /
    • 2018
  • Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.