• Title/Summary/Keyword: Generation Sector

Search Result 283, Processing Time 0.023 seconds

A Study on the Prediction of Groundwater Contamination using the GIS in Hwanam 2 Sector, Gyeonggi Province, Korea (GIS를 이용한 경기도 화남2지구의 지하수오염 예측에 관한 연구)

  • Son, Ho-Ung
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.89-107
    • /
    • 2004
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters, such as structural lineament density and landuse, into conventional DRASTIC model, and to predict the potential of groundwater contamination using GIS in Whanam 2 Area, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament density affects to the behavior of groundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Composite contamination map was achieved as a final result by comparing modified DRASTIC potential and the amount of generation load of several contaminant sources logically. The result could suggest the predictability of the area of contamination potential on the respects of hydrogeological aspect and water quality.

  • PDF

The Study of Industrial Trends in Automotive Sensors Industry (차량용 센서 산업분석 및 발전방안)

  • Heo, Pil-sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.829-832
    • /
    • 2009
  • Recently, IT-centered convergence between different industries has undergone rapid expansion, accompanied by major advances in u-IT development and digital convergence. Notably, in the automotive-IT convergence sector, automotive sensors and electronic devices interact closely and intelligently with each other, thereby increasing driver safety and convenience and creating the optimal driving environment. This has led to the generation of value-added for the future-oriented automotive industry. Sensing technologies - which are used to monitor traffic situations and transmit correct information (or warnings) on the road traffic situation to car drivers, and to provide accurate information to road traffic controllers - represent both the birth of high-safety, intelligent automotive technologies and the key to automotive manufacturing. In view of these developments, this paper examines the characteristics and structure of the automotive sensor industry, and outlines the policy implications for the automotive sensor industry with regard to the development of the automotive-IT convergence industry.

  • PDF

Correlation between Disease Occurrences and Microbial Community Structure by Application of Organic Materials in Pepper (유기농자재 사용에 따른 고추 병해 발생과 토양 미생물상 구조의 상관관계)

  • Cho, Gyeongjun;Kim, Seong-Hyeon;Lee, Yong-Bok;Kwak, Youn-Sig
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.202-209
    • /
    • 2020
  • Organic farming is necessary to sustainable agriculture, preserve biodiversity and continued growth the sector in agriculture. In organic farming, reduced usage of chemical agents that adversely affect human health and environment, employing amino acids and oil cake fertilizer, plant extracts, and microbial agents are used to provide safe agricultural products to consumers. To investigation microbiome structure, we proceeded on the pepper plant with difference fertilizers and treatments in organic agriculture for three years. The microbial communities were analyzed by the next generation sequencing approach. Difference soil microbiota communities were discovered base on organic fertilizer agents. Occurrences of virus and anthracnose diseases had a low incidence in conventional farming, whereas bacteria wilt disease had a low incidence in microbial agents treated plots. Microbe agents, which applied in soil, were detected in the microbial community and the funding suggested the applied microbes successfully colonized in the organic farming environment.

A Simulation Study of Renewable Power based Green Hydrogen Mobility Energy Supply Chain Systems (재생에너지 기반 청정 수소 운송 에너지 시스템 모사 연구)

  • Lee, Joon Heon;Ryu, Jun-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.34-50
    • /
    • 2022
  • Since the Paris climate agreement, reducing greenhouse gases has been the most important global issue. In particular, it is necessary to reduce fossil fuels in the mobility sector, which accounts for a significant portion of total greenhouse gas emissions. In this paper, we investigated the economic feasibility of green mobility energy supply chains, which supply hydrogen as fuel to hydrogen vehicles based on electricity from renewable energy sources. The design and operation costs were analyzed by evaluating nine scenarios representing various combinatorial possibilities such as renewable energy generation, hydrogen production through water electrolytes, hydrogen storage and hydrogen refueling stations. Simulation calculations were made using Homer Pro, widely used commercial software in the field. The experience gained in this study could be further utilized to construct actual hydrogen energy systems.

Decomposition Analysis of Energy Use for Water Supply: From the Water-Energy Nexus Perspective (물 공급을 위한 에너지 사용 요인분해 분석: Water-Energy Nexus 관점에서)

  • Yoo, Jae-Ho;Jo, Yeon Hee;Kim, Hana;Jeon, Eui Chan
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.240-246
    • /
    • 2022
  • Water and energy are inextricably linked and referred to as 'Water-Energy Nexus'. Recently, this topic has been drawing a lot of attention from various studies due to the exacerbated water availability. Korea's water and energy consumption has been increasing consistently, which calls for better management. This paper aims to identify changes in electricity consumption in relation to water intake and purification processes. Using Log Mean Divisia Index (LMDI) Decomposition Analysis method, this study attributes the changes to major factors such as; Total population (population effect), household/population (structure effect), GDP/household (economic effect), and water-related energy use/GDP (unit effect). The population effect, structure effect, and economic effect contributed to an increase in water-related electricity consumption, while the unit effect contributed to a decrease. As of 2019, the economic effect increased the water supply sector's electricity consumption by 534 GWh, the population effect increased by 73 GWh, and the structure effect increased by 243 GWh. In contrast, the unit effect decreased the electricity consumption by -461 GWh. We would like to make the following suggestions based on the findings of this study; first, the unit effect must be improved by increasing the energy efficiency of water intake and purification plants and installing renewable energy power generation facilities. Second, the structure effect is expected to increase over time, and to mitigate it, water consumption must be reduced through water conservation policies and the improvement of water facilities. Finally, the findings of this study are expected to be used as foundational data for integrated water and energy management.

The Effects of Hazardous Substances Generation and Media Reports on the Production, Distribution and Consumption of Aquatic Products (식품안전 위해물질의 발생 및 언론보도가 수산물 생산, 유통 및 소비에 미치는 영향)

  • Moon, Seong-Ju;Kang, Jong-Ho
    • The Journal of Fisheries Business Administration
    • /
    • v.52 no.4
    • /
    • pp.29-43
    • /
    • 2021
  • This study investigated whether there is a correlation between the occurrence of hazardous substances such as vibrio, norovirus, radioactivity, shellfish posion, hepatitis A, etc. and media reports, and whether the occurrence of hazardous substances and media reports affect the production, distribution and consumption of aquatic products. The main research results are as follows. First, it can be seen that there is a difference in the relationship between the occurrence of hazardous substances and media reports according to hazardous substances. Second, it suggests seen that the occurrence of hazardous substances and media reports can have a negative effect on the production and the prices of aquatic products. Third, it was found that the occurrence and reporting of hazardous substances had different effects on the distribution margin of aquatic products due to the complexity and rigidity of the distribution structure. Fourth, consumers feel a threat to aquatic products safety and significantly reduce consumption when hazardous substances occur. There is a possibility that concerns about one item may lead to a decrease in consumption of domestic and imported aquatic products that are not related at all to the occurrence of hazardous substances. In conclusion, aquatic products are exposed to various hazardous substances such as vibrio, norovirus, radioactivity, shellfish posion, and hepatitis A. It was found that the occurrence of hazardous substances and its media reports could cause damage to the fishery sector.

Potential use of local waste scoria as an aggregate and SWOT analysis for constructing structural lightweight concrete

  • Islam, A.B.M. Saiful;Walid, Walid;Al-Kutti, A.;Nasir, Muhammad;Kazmi, Zaheer Abbas;Sodangi, Mahmoud
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This study aims to investigate the influence of scoria aggregate (SA) and silica fume (SF) as a replacement of conventional aggregate and ordinary Portland cement (OPC), respectively. Three types of concrete were prepared namely normal weight concrete (NWC) using limestone aggregate (LSA) and OPC (control specimen), lightweight concrete (LWC) using SA and OPC, and LWC using SA and partial SF (SLWC). The representative workability and compressive strength properties of the developed concrete were evaluated, and the results were correlated with non-destructive ultrasonic pulse velocity and Schmidt hammer tests. The LWC and SLWC yielded compressive strength of around 30 MPa and 33 MPa (i.e., 78-86% of control specimens), respectively. The findings indicate that scoria can be beneficially utilized in the development of structural lightweight concrete. Present renewable sources of aggregate will preserve the natural resources for next generation. The newly produced eco-friendly construction material is intended to break price barriers in all markets and draw attraction of incorporating scoria based light weight construction in Saudi Arabia and GCC countries. Findings of the SWOT analysis indicate that high logistics costs for distributing the aggregates across different regions in Saudi Arabia and clients' resistant to change are among the major obstacles to the commercialized production and utilization of lightweight concrete as green construction material. The findings further revealed that huge scoria deposits in Saudi Arabia, and the potential decrease in density self-weight of structural elements are the major drivers and enablers for promoting the adoption of lightweight concrete as alternative green construction material in the construction sector.

Optimization of Heat Exchange Network of SOFC Cogeneration System Based on Agricultural By-products (농산부산물 기반 SOFC 열병합발전 시스템 열교환망 최적화)

  • Gi Hoon Hong;Sunghyun Uhm;Hyungjune Jung;Sungwon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In this study, we constructed a process simulation model for an agricultural by-products based Solid Oxide Fuel Cell (SOFC) combined heat and power generation system as part of the introduction of technology for energy self-sufficiency in the agricultural sector. The aim was to reduce the burden of increasing fuel and electricity consumption due to rapid fluctuations in international oil prices and the expansion of smart farming in domestic farms, while contributing to the national greenhouse gas reduction goals. Based on the experimental results of 0.3 ton/day torrefied agricultural by-product gasification experiment, a model for an agricultural by-product-based SOFC cogeneration system was constructed, and optimization of the heat exchange network was conducted for SOFC capacities ranging from 4 to 20 kW. The results indicated that an 8 kW agricultural by-product-based SOFC cogeneration system was optimal under the current system conditions. It is anticipated that these research findings can serve as foundational data for future commercial facility design.

Research on Utilization of AI in the Media Industry: Focusing on Social Consensus of Pros and Cons in the Journalism Sector (미디어 산업 AI 활용성에 관한 고찰 : 저널리즘 분야 적용의 주요 쟁점을 중심으로)

  • Jeonghyeon Han;Hajin Yoo;Minjun Kang;Hanjin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.713-722
    • /
    • 2024
  • This study highlights the impact of Artificial Intelligence (AI) technology on journalism, discussing its utility and addressing major ethical concerns. Broadcasting companies and media institutions, such as the Bloomberg, Guardian, WSJ, WP, NYT, globally are utilizing AI for innovation in news production, data analysis, and content generation. Accordingly, the ecosystem of AI journalism will be analyzed in terms of scale, economic feasibility, diversity, and value enhancement of major media AI service types. Through the previous literature review, this study identifies key ethical and social issues in AI journalism as well. It aims to bridge societal and technological concerns by exploring mutual development directions for AI technology and the media industry. Additionally, it advocates for the necessity of integrated guidelines and advanced AI literacy through social consensus in addressing these issues.

Brief Review of Silicon Solar Cells (실리콘 태양전지)

  • Yi, Jun-Sin
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • Photovoltaic (PV) technology permits the transformation of solar light directly into electricity. For the last five years, the photovoltaic sector has experienced one of the highest growth rates worldwide (over 30% in 2006) and for the next 20 years, the average production growth rate is estimated to be between 27% and 34% annually. Currently the cost of electricity produced using photovoltaic technology is above that for traditional energy sources, but this is expected to fall with technological progress and more efficient production processes. A large scale production of solar grade silicon material of high purity could supply the world demand at a reasonably lower cost. A shift from crystalline silicon to thin film is expected in the future. The technical limit for the conversion efficiency is about 30%. It is assumed that in 2030 thin films will have a major market share (90%) and the share of crystalline cells will have decreased to 10%. Our research at Sungkyunkwan University of South Korea is confined to crystalline silicon solar cell technology. We aim to develop a technology for low cost production of high efficiency silicon solar cell. We have successfully fabricated silicon solar cells of efficiency more than 16% starting with multicrystalline wafers and that of efficiency more than 17% on single crystalline wafers with screen printing metallization. The process of transformation from the first generation to second generation solar cell should be geared up with the entry of new approaches but still silicon seems to remain as the major material for solar cells for many years to come. Local barriers to the implementation of this technology may also keep continuing up to year 2010 and by that time the cost of the solar cell generated power is expected to be 60 cent per watt. Photovoltaic source could establish itself as a clean and sustainable energy alternate to the ever depleting and polluting non-renewable energy resource.