Background: A unique framework for performance optimization of generation companies (GENCOs) based on health, safety, environment, and ergonomics (HSEE) indicators is presented. Methods: To rank this sector of industry, the combination of data envelopment analysis (DEA), principal component analysis (PCA), and Taguchi are used for all branches of GENCOs. These methods are applied in an integrated manner to measure the performance of GENCO. The preferred model between DEA, PCA, and Taguchi is selected based on sensitivity analysis and maximum correlation between rankings. To achieve the stated objectives, noise is introduced into input data. Results: The results show that Taguchi outperforms other methods. Moreover, a comprehensive experiment is carried out to identify the most influential factor for ranking GENCOs. Conclusion: The approach developed in this study could be used for continuous assessment and improvement of GENCO's performance in supplying energy with respect to HSEE factors. The results of such studies would help managers to have better understanding of weak and strong points in terms of HSEE factors.
The Transactions of The Korean Institute of Electrical Engineers
/
v.56
no.7
/
pp.1199-1204
/
2007
In a cost based pool market, the generation capacity can be used as strategic bids by generation companies (Gencos) with the cost functions open to the market. Competition using strategic capacities is modeled by Cournot and Perfect Competiton (PC) model, and transformed into two by two payoff matrix game with Gencos' decision variables of Cournot and PC model. The payoff matrices vary when capacity payments are given to Gencos in accordance with their capacity bids. Nash Equilibrium (NE) in the matrices also moves with capacity price changes. In order to maximize social welfare of the market, NE should locate in a certain position of the payoff matrices, which corresponds to a PC NE. A concept of a critical capacity price is proposed and calculated in this paper that is defined as a minimum capacity price leading to PC NE. The critical capacity price is verified to work as a tool for suppressing a strategic capacity withholding in simulations of a test system.
This paper presents a new approach with artificial immune system algorithm to solve the profit based unit commitment problem. The objective of this work is to find the optimal generation scheduling and to maximize the profit of generation companies (Gencos) when subjected to various constraints such as power balance, spinning reserve, minimum up/down time and ramp rate limits. The proposed hybrid method is developed through adaptive search which is inspired from artificial immune system and genetic algorithm to carry out profit maximization of generation companies. The effectiveness of the proposed approach has been tested for different Gencos consists of 3, 10 and 36 generating units and the results are compared with the existing methods.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.53
no.6
/
pp.350-357
/
2004
In a deregulated electricity generation market, the sufficient capacity of transmission lines will promote the competition among generation companies (Gencos). In this paper, we show that Gencos' possession of rights to collect congestion rents may increase the competition effects of the transmission lines. In order for concrete analysis on this effect, a simple symmetric market model is introduced. In this framework, introducing the transmission right to the Gencos has the same strategic effects as increasing the line capacity of the transmission line. Moreover, the amount of effectively increased line capacity is equal to the amount of the line rights. We also show that the asymmetric share of the financial transmission rights may result in an asymmetric equilibrium even for symmetric firms and markets. We also demonstrate these aspects in equal line rights model and single firm line rights model. Finally, a numerical example is provided to show the basic idea of the proposed paper.
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.12
/
pp.1705-1711
/
2017
This paper analyzes the impact of DRA (Demand Response Aggregator) on market power when competing with power generation companies (Gencos) in the electricity market. If congestion occurs in the transmission line, the strategic choice of the power generation company increases exercise of market power. DRA's strategic reduction of power load impacts the strategy of Gencos, which in turn affects the outcome of the load reduction. As the strategy of Gencos changes according to the location of the congested transmission line, the impact on the market depends on the relative location of the congested line and the DRA.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.53
no.8
/
pp.477-483
/
2004
In competitive electricity markets, maintenance schedule is submitted by generation companies (GENCOs) and transmission companies (TRANSCOs), and coordinated by Independent System Operator (ISO) with the adequacy criterion. This paper presents an alternative coordination procedure by ISO on the maintenance schedule. In this paper, it is focused on modeling a coordination algorithm by ISO for the maintenance schedule based on the Simulated Annealing algorithm. The proposed model employs the minimum information such as generator capacity, forced outage rate and generator maintenance schedules. The objective function of this model represents minimization of adjustment on schedules submitted by GENCOs.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.52
no.9
/
pp.542-549
/
2003
In this paper, a novel approach to generator maintenance scheduling strategy in competitive electricity markets based on non-cooperative dynamic game theory is presented. The main contribution of this study can be considered to develop a game-theoretic framework for analyzing strategic behaviors of generating companies (Gencos) from the standpoints of the generator maintenance-scheduling problem (GMP) game. To obtain the equilibrium solution for the GMP game, the GMP problem is formulated as a dynamic non-cooperative game with complete information. In the proposed game, the players correspond to the profit-maximizing individual Gencos, and the payoff of each player is defined as the profits from the energy market. The optimal maintenance schedule is defined by subgame perfect equilibrium of the game. Numerical results for two-Genco system by both proposed method and conventional one are used to demonstrate that 1) the proposed framework can be successfully applied in analyzing the strategic behaviors of each Genco in changed markets and 2) both methods show considerably different results in terms of market stability or system reliability. The result indicates that generator maintenance scheduling strategy is one of the crucial strategic decision-makings whereby Gencos can maximize their profits in a competitive market environment.
KIEE International Transactions on Power Engineering
/
v.5A
no.4
/
pp.331-338
/
2005
In this paper, an improved maintenance scheduling approach suitable for the competitive environment is proposed by taking account of profits and costs of generation companies and the formulated combinatorial optimization problem is solved by using Reactive Tabu search (RTS). In competitive power markets, electricity prices are determined by the balance between demand and supply through electric power exchanges or by bilateral contracts. Therefore, in decision makings, it is essential for system operation planners and market participants to take the volatility of electricity price into consideration. In the proposed maintenance scheduling approach, firstly, electricity prices over the targeted period are forecasted based on Artificial Neural Network (ANN) and also a newly proposed aggregated bidding curve. Secondary, the maintenance scheduling is formulated as a combinatorial optimization problem with a novel objective function by which the most profitable maintenance schedule would be attained. As an objective function, Opportunity Loss by Maintenance (OLM) is adopted to maximize the profit of generation companies (GENCOS). Thirdly, the combinatorial optimization maintenance scheduling problem is solved by using Reactive Tabu Search in the light of the objective functions and forecasted electricity prices. Finally, the proposed maintenance scheduling is applied to a practical test power system to verify the advantages and practicability of the proposed method.
This paper presents the application of Differential Evolution (DE) algorithm to obtain a solution for Bid Based Dynamic Economic Dispatch (BBDED) problem including the transmission losses and to maximize the social profit in a deregulated power system. The IEEE-30 bus test system with six generators, two customers and two trading periods are considered under various bidding strategies in a day-ahead electricity market. By matching the bids received from supplying and distributing entities, the Independent System Operator (ISO) maximize the social profit, (with the choices available). The simulation results of DE are compared with the results of Particle swarm optimization (PSO). The results demonstrate the potential of DE algorithm and show its effectiveness to solve BBDED.
This paper presents the Improved Pre-prepared Power Demand (IPPD) table and Muller's method as a means of solving the Profit Based Unit Commitment (PBUC) problem. In a deregulated environment, generation companies (GENCOs) schedule their generators to maximize profits rather than to satisfy power demand. The PBUC problem is solved by the proposed approach in two stages. Initially, information concerning committed units is obtained by the IPPD table and then the subprob-lem of Economic Dispatch (ED) is solved using Muller's method. The proposed approach has been tested on a power system with 3 and 10 generating units. Simulation results of the proposed approach have been compared with existing methods and also with traditional unit commitment. It is observed from the simulation results that the proposed algorithm provides maximum profit with less computational time compared to existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.