• Title/Summary/Keyword: Generating Efficiency

Search Result 655, Processing Time 0.028 seconds

A Study on the Generating Efficiency and NOx Emissions of a 30kW Gas Engine Generator with Hydrogen Addition (수소 첨가에 따른 30kW급 가스엔진 발전기의 발전효율 및 질소산화물 배출량 특성 연구)

  • Cha, Hyo-Seok;Kim, Tae-Soo;Eom, Tae-Jun;Chun, Kwang-Min;Song, Soon-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.313-318
    • /
    • 2011
  • This study is about characteristics of generating efficiency and $NO_x$ emissions of a 30 kW gas engine generator in case of using model biogas with hydrogen addition. In this case, both generating efficiency and $NO_x$ emissions are lower than the case of using urban gas (LNG). However, generating efficiency and $NO_x$ emissions are higher than the case of using model biogas only. It means that adding hydrogen which has a high flame propagation velocity has the possibility to improve the generating efficiency, but simultaneously it is also able to increase the $NO_x$ emissions of a gas engine generator.

Enhancement of Wireless Power Transfer Efficiency Using Higher Order Spherical Modes

  • Kim, Yoon Goo;Park, Jongmin;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • We derive the Z-parameters for the two coupled antennas used for wireless power transfer under the assumption that the antennas are canonical minimum scattering antennas. Using the Z-parameter and the maximum power transfer efficiency formula, we determine the maximum power transfer efficiency of wireless power transfer systems. The results showed that the maximum power transfer efficiency increases as the mode number or the radiation efficiency increases. To verify the theory, we fabricate and measure two different power transfer systems: one comprises two antennas generating $TM_{01}$ mode; the other comprises two antennas generating $TM_{02}$ mode. When the distance between the centers of the antennas was 30 cm, the maximum power transfer efficiency of the antennas generating the $TM_{02}$ mode increased by 62 % compared to that of the antennas generating the $TM_{01}$ mode.

Generating efficiency and NOx emissions of a gas engine generator fuelled with biogas (바이오가스를 이용한 가스엔진 발전기의 발전효율 및 질소산화물 배출 특성)

  • Lee, Kyung-Taek;Cha, Hyo-Seok;Chun, Kwang-Min;Song, Soon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.306-309
    • /
    • 2009
  • Concern for new and renewable energy is growing globally. Biogas is one of the alternative fuels and consists of methane and carbon dioxide. It is difficult to achieve efficient engine operation due to a lower heating value of biogas compared to that of natural gas. In order to improve generating efficiency, finding an optimum point of ignition timing and excess air ratio is important. From this fact, generating efficiency and pollutant emissions of 2300cc gas engine generator operated by biogas as functions of ignition timings and excess air ratios were investigated in this study. As a test result, the generating efficiency of the gas engine generator using biogas was 27.34 % in the condition of the BTDC of $16^{\circ}$ and the excess air ratio of 1.4.

  • PDF

Analysis of Energy Losses in a Natural Gas Spark Ignition Engine for Power Generation (천연가스 스파크점화 엔진 발전기에서의 에너지 손실 분석)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yongkyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.170-177
    • /
    • 2020
  • Stoichiometric combustion in spark ignition (SI) engines has an advantage of meeting future stringent emission regulations. However, the drawback of the combustion is a lower thermal efficiency than that of lean burn. In this study, energy losses in a natural gas stoichiometric SI engine generator were analyzed to establish a strategy for improving the generating efficiency (GE). The energy losses were investigated based on dynamometer and load bank experiments. As the intake manifold pressure increased in the dynamometer experiment, the brake thermal efficiency (BTE) increased mainly due to the reduction in the pumping and mechanical losses. In the load bank experiment, the generating power and GE increased with the increased intake manifold pressure. The generating power and GE were lower than the brake power and BTE due to the cooling fan power and the losses in the generator.

Maximum Efficiency Point Tracking Control Algorithm for Improving Electric Power Transmission Efficiency between Photovoltaic Power Generating system and the Grid (태양광발전시스템과 계통간의 전력 전송 효율 개선을 위한 최대효율점 추적 제어 알고리즘)

  • Kwon, Cheol-Soon;Kim, Kwang Soo;Do, Tae Young;Park, Sung-Jun;Kang, Feel-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.342-348
    • /
    • 2013
  • It proposes an efficient control algorithm to increase electric power transmission efficiency between photovoltaic power generating system and the grid. The main controller finds a maximum efficiency condition by considering the quantity of power generated from PV arrays, the number of inverters, and efficiency of PV inverter. According to the condition, a relay board arranges a point of contract of PV arrays. By the disposition of PV arrays, it assigns the optimized power on each PV inverter. Operational principle of the proposed maximum efficiency point tracking algorithm is given in detail. To verify the validity of the proposed approach, computer-aided simulation and experiment carried out.

A Study on Generating efficiency of the Double Acting Stirling Engine/Generator (양방향 스털링엔진/발전기의 효율 특성 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.114-120
    • /
    • 2016
  • This paper describes generating efficiency characteristics of the double acting Stirling engine/generator for domestic small-scale CHP (Combined Heat and Power) system. In small distributed generation applications, Stirling engine has competition from fuel cell, microturbine and etc. In order to be economical in the applications, a long life with minimum maintenance is generally required. Free piston Stirling engine (FPSE) has no crank and rotating parts to generate lateral forces and require lubrication. Double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric displacement and are connected with moving magnet type linear generators for power generation from PV work. In experiments, 1 kW class double acting free piston Stirling engine/generator is fabricated and tested. Heat is supplied to hot end of engine by the combustion of natural gas and converted to electric power by linear generators which are assembled with power pistons. The electric parameters such as voltage, current and phase are measured with for variable flow rate of fuel gas. Especially, generating efficiency of FPSE is measured with three different measurement methods. Generating efficiency of the double acting Stirling engine/alternator is about 24%.

Analysis of Energy Conversion Efficiency in Micro Power Generation using Vibrating Piezoelectric Cantilever (압전빔의 진동을 이용한 마이크로 동력원의 에너지 변환 해석)

  • Lee, Heon-Ju;Chang, Young-Soo;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3365-3370
    • /
    • 2007
  • We developed micro power generation system using piezoelectric materials. In our system, the ambient vibrating energy is converting to electric energy by deflection of piezoelectric beams. The system consists of energy generating parts, converting enhancement parts, electric regulation and charging parts, and interface with small-energy-consuming mobile devices. The geometry of piezoelectric beams, the source of vibrating energy, and the electric load of target application determine the characteristics of generating electric power, such as impedance, voltage, current and power density. Therefore, we made a model for analysis of generating power with given information such as piezoelectric materials, geometry, vibration type, and mass. With this model, we can calculate capacitance of piezoelectric beams, generating voltage, current, and power. To obtain maximum energy transfer efficiency, we approached this study in the view of material, electrical, and mechanical engineering

  • PDF

Design of the recuperator for the gas turbine/fuel cell hybrid power generating system (가스터빈/연료전지 혼합발전 시스템의 열교환기 설계)

  • Kwak, Jae-Su;Yang, Soo-Seok;Lee, Dae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2105-2110
    • /
    • 2004
  • Plate-fin type recuperators for the gas turbine/fuel cell hybrid power generating system were designed using commercial design software, MUSE. Heat transfer efficiency and total pressure drop in the recuperator were calculated to confirm required recuperator performance. Both counter flow and cross flow type plate-fin recuperators were designed. Results show that the counter flow type has higher efficiency and short core length, but the cross flow type is simpler to construct because the cross flow type does not need additional distributors. Two or three headers for the each recuperator core will be designed and tested to evaluate best header design. The designed recuperators and headers which will be designed later will be constructed, tested, and used in gas turbine/fuel cell hybrid power generating system.

  • PDF

Energy Generating Self-cooling Greenhouse (열-전기 병합 에너지 생산 겸 자체 냉각 온실)

  • Kleinwachter, Jurgen;Chung, Mo;Kim, Jong-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.584-587
    • /
    • 2006
  • An energy generating greenhouse based on fluoropolymer envelope and fresnel lens is proposed. The outstanding properties of the fluoropolymer films make them very suitable for large scale solar applications. Extremely high optical transmission over the whole solar spectrum, combined with mechanical strength, and durability allows us to design a highly optimized greenhouses for both plant growing and energy generation. Systems such as photovoltaic triple junction cells are especially attractive since they have up to 35% efficiency with much less cell material when the sun beam is focused with concentrators such as fresnel lenses. Cooling such devices will enhance the efficiency and provide useful thermal energy that could be further utilized for various applications depending on the local demands. This article introduces the basic ideas and principles of the energy generating greenhouses as a first step towards the actual deployment of such systems under Korean environment.

  • PDF

DEVELOPMENT OF HIGH EFFICIENCY COGENERATION SYSTEM USING BIOGAS FOR THE LOWER POLLUTION OF THE ENVIRONMENTAL

  • Park, J.S.;Ishii, K.;Terao, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.670-675
    • /
    • 2000
  • The purpose of the study is development and investigation about basic performance of the system operation on a dual fueled cogeneration system(CGS), which is operated with biogas and gas oil. As often seen in dual fueled CGS performance, the electric generating efficiency was obtained about 26□. Methane contained in the biogas could not bum completely at lower load, and it was discharged into exhaust gas. Considerable amount of the methane burned in the exhaust pipe, and the heat recovery ratio was 42□ on heat balance. As a result, the total heat efficiency, which is a summation of generating efficiency and heat recovery efficiency reached to about 70□. The supply of biogas into the engine reduces smoke density and NOx concentration in exhaust gas. At lower load, methane burned slowly and large portion of it was discharged without burning. Therefore the measures are desirable that promotes combustion of methane at lower load.

  • PDF