Communications for Statistical Applications and Methods
/
v.30
no.6
/
pp.589-603
/
2023
Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.
History, which began with the emergence of mankind, has a means of recording. Today, we can check the past through data. Generated data may only be generated and stored at a certain moment, but it is not only continuously generated over a certain time interval from the past to the present, but also occurs in the future, so making predictions using it is an important task. In order to find out trends in the use of time series data among numerous data, this paper analyzes the concept of time series data, analyzes Recurrent Neural Network and Long-Short Term Memory, which are mainly used for time series data analysis in the machine learning field, and analyzes the use of these models. Through case studies, it was confirmed that it is being used in various fields such as medical diagnosis, stock price analysis, and climate prediction, and is showing high predictive results. Based on this, we will explore ways to utilize it in the future.
With the development of web, amount of information are generated in social web. Then many researchers are focused on the extracting and analyzing social issues from various social data. The proposed approach performed gathering the science data and analyzing with LDA algorithm. It generated the clusters which represent the social topics related to 'health'. As a result, we could deduce the relationship between science data and social issues.
PR interval variability has been proposed as a noninvasive tool for in-vestigating the autonomic nervous system as welt as heart rate variability. The goal of this paper is to determine whether PR interval variability is generated from deterministic nonlinear dynamics. The data used in this study is a 24-hour bolter ECGs of 20 healthy adults. We developed an automatic PR interval measurement algorithm, and tested it using MIT ECG Databases. The general discriminants of nonlinear dynamics, such as, correlation dimension and phase space reconstruction are used. Surrogate data is generated from simpler linear models to have similar statistical characteristics with the original data. Nonlinear discriminants are applied to both data, and compared for any significant results. It was concluded that PR interval variability shows non-linear characteristics.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.6
/
pp.785-790
/
2006
In RFID-based SCM, The traceability and product information is the important target data. In this paper, efficient items traceability model and the integrated model of the product between RFID network and GDS(Global Data Synchronization) network are studied. Information consists of the dynamic data generated from RFID network and static data generated from GDS Network. The integrated model will provide the interoperability between 2 kinds of networks.
Konduru, Venkateswara Raju;Bharamgoudra, Manjula R
Journal of information and communication convergence engineering
/
v.19
no.3
/
pp.166-174
/
2021
A large volume of patient data is generated from various devices used in healthcare applications. With increase in the volume of data generated in the healthcare industry, more wellness monitoring is required. A cloud-enabled analysis of healthcare data that predicts patient risk factors is required. Machine learning techniques have been developed to address these medical care problems. A novel technique called the radix-trie-based Tanimoto kernel regressive infomax boost classification (RT-TKRIBC) technique is introduced to analyze the heterogeneous health data in the cloud to predict the health risks and send alerts. The infomax boost ensemble technique improves the prediction accuracy by finding the maximum mutual information, thereby minimizing the mean square error. The performance evaluation of the proposed RT-TKRIBC technique is realized through extensive simulations in the cloud environment, which provides better prediction accuracy and less prediction time than those provided by the state-of-the-art methods.
Physical sensor model in pushbroom satellite images can be made from sensor modeling by rotation parameters and attitude parameters on the satellite track. These parameters are determined by the information obtained from GPS, INS, or star tracker. Provided from satellite image, an auxiliary data error is connected directly with an error of rotation parameters and attitude parameters. This paper analyzed how obtaining satellite images influenced errors of rotation parameters and attitude parameters. furthermore, for detailed analysis, this paper generated simulated satellite image, which was changed variously by rotation parameters and attitude parameters of satellite sensor model. Simulated satellite image is generated by using high-resolution digital aerial image and DEM (Digital Elevation Model) data. Moreover, this paper determined correlation of rotation parameter and attitude parameters through error analysis of simulated satellite image that was generated by various rotation parameters and attitude parameters.
This study was performed to investigate vibration generated from machines that were used at factories and construction works. Vibrations were measured at three points in a straight line based on distance from the vibration sources, and analyzed to assess the vibration bevels. The average vibration level of factory machines was 65.4dBV at 2m, and that of construction machines was 74.0dBV at 5m. Vibration attenuations was 4.0~8.2dBV by double distance. All such data were applied to gain coefficients of attenuation equations for predicting vibration level by distance from the vibration sources. Data recorded on tapes were analyzed to understand the characteristics of frequency because these characteristics are important factors to design a Plan for installing the vibration-Proof devices. Finally, considering results from these analysis, assessment, and prediction, the methods for reducing vibration generated from machines were discussed.
This paper shows how to implement force reflection for a needle insertion problem. The target is a needle spine biopsy simulator for tumor inspection by needle insertion. Simulated force is calculated from the relationship of volume graphic data and the orientation and Position of the needle, and it is generated using PHANTOM$^{TM}$. To generate realistic force reflection, the directional force of the needle has been generated by tissue model. The other rotational force is generated using a pivot to keep the needle in the initial inserted direction after puncturing the skin. Since the used haptic device has limitation for generating high stiffness and large damping, scale downed model and digital filter are used to stabilize the system.m.
Journal of the Korea Society of Computer and Information
/
v.23
no.11
/
pp.43-49
/
2018
In this paper, we propose a displacement measurement method based on deep learning using image data obtained from tensile tests of a material specimen. We focus on the fact that the sequential images during the tension are generated and the displacement of the specimen is represented in the image data. So, we designed sample generation model which makes sequential images of specimen. The behavior of generated images are similar to the real specimen images under tensile force. Using generated images, we trained and validated our model. In the deep neural network, sequential images are assigned to a multi-channel input to train the network. The multi-channel images are composed of sequential images obtained along the time domain. As a result, the neural network learns the temporal information as the images express the correlation with each other along the time domain. In order to verify the proposed method, we conducted experiments by comparing the deformation measuring performance of the neural network changing the displacement range of images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.