• Title/Summary/Keyword: Generated Data

Search Result 6,856, Processing Time 0.051 seconds

Dead Layer Thickness and Geometry Optimization of HPGe Detector Based on Monte Carlo Simulation

  • Suah Yu;Na Hye Kwon;Young Jae Jang;Byungchae Lee;Jihyun Yu;Dong-Wook Kim;Gyu-Seok Cho;Kum-Bae Kim;Geun Beom Kim;Cheol Ha Baek;Sang Hyoun Choi
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.129-135
    • /
    • 2022
  • Purpose: A full-energy-peak (FEP) efficiency correction is required through a Monte Carlo simulation for accurate radioactivity measurement, considering the geometrical characteristics of the detector and the sample. However, a relative deviation (RD) occurs between the measurement and calculation efficiencies when modeling using the data provided by the manufacturers due to the randomly generated dead layer. This study aims to optimize the structure of the detector by determining the dead layer thickness based on Monte Carlo simulation. Methods: The high-purity germanium (HPGe) detector used in this study was a coaxial p-type GC2518 model, and a certified reference material (CRM) was used to measure the FEP efficiency. Using the MC N-Particle Transport Code (MCNP) code, the FEP efficiency was calculated by increasing the thickness of the outer and inner dead layer in proportion to the thickness of the electrode. Results: As the thickness of the outer and inner dead layer increased by 0.1 mm and 0.1 ㎛, the efficiency difference decreased by 2.43% on average up to 1.0 mm and 1.0 ㎛ and increased by 1.86% thereafter. Therefore, the structure of the detector was optimized by determining 1.0 mm and 1.0 ㎛ as thickness of the dead layer. Conclusions: The effect of the dead layer on the FEP efficiency was evaluated, and an excellent agreement between the measured and calculated efficiencies was confirmed with RDs of less than 4%. It suggests that the optimized HPGe detector can be used to measure the accurate radioactivity using in dismantling and disposing medical linear accelerators.

Determination of halogen elements in plastics by using combustion ion chromatography (연소IC를 이용한 플라스틱 중 할로겐 물질 정량)

  • Jung, Jae Hak;Kim, Hyo Kyoung;Lee, Yang Hyoung;Lee, Lim Soo;Shin, Jong Keun;Lee, Sang Hak
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.284-295
    • /
    • 2008
  • For plastics samples, a method using combustion ion chromatography was selected as a method for rapid low-cost analysis to test whether hazardous substances are contained or not. Using combustion ion chromatography, a verification test for F, Cl and Br compounds generated a linear calibration curve with a correlation coefficient of $r^2$ = 0.999~1.000 in the calibration range from 0.5 to 4.0 mg/kg. The detection limits were found to be 0.005~0.024 mg/kg and quantitative limits were found to be 0.014~0.073 mg/kg. The recoveries of combustion ion chromatography using certified reference material (CRM) were found to be 95.5~104.9%. Based on these results, a proficiency test was conducted together with several laboratories in and out of the country, to make comparative analysis of the results from each laboratory. As a result, the data supported the use of combustion ion chromatography as an effective analysis method to deal with regulations for halogen-free electronic products and for other hazardous substances in the electronic products.

Automatic Electronic Medical Record Generation System using Speech Recognition and Natural Language Processing Deep Learning (음성인식과 자연어 처리 딥러닝을 통한 전자의무기록자동 생성 시스템)

  • Hyeon-kon Son;Gi-hwan Ryu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.731-736
    • /
    • 2023
  • Recently, the medical field has been applying mandatory Electronic Medical Records (EMRs) and Electronic Health Records (EHRs) systems that computerize and manage medical records, and distributing them throughout the entire medical industry to utilize patients' past medical records for additional medical procedures. However, the conversations between medical professionals and patients that occur during general medical consultations and counseling sessions are not separately recorded or stored, so additional important patient information cannot be efficiently utilized. Therefore, we propose an electronic medical record system that uses speech recognition and natural language processing deep learning to store conversations between medical professionals and patients in text form, automatically extracts and summarizes important medical consultation information, and generates electronic medical records. The system acquires text information through the recognition process of medical professionals and patients' medical consultation content. The acquired text is then divided into multiple sentences, and the importance of multiple keywords included in the generated sentences is calculated. Based on the calculated importance, the system ranks multiple sentences and summarizes them to create the final electronic medical record data. The proposed system's performance is verified to be excellent through quantitative analysis.

Detecting Nonlinearity of Hydrologic Time Series by BDS Statistic and DVS Algorithm (BDS 통계와 DVS 알고리즘을 이용한 수문시계열의 비선형성 분석)

  • Choi, Kang Soo;Kyoung, Min Soo;Kim, Soo Jun;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.163-171
    • /
    • 2009
  • Classical linear models have been generally used to analyze and forecast hydrologic time series. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. In recent, the BDS (Brock-Dechert-Scheinkman) statistic instead of conventional techniques has been used for detecting nonlinearity of time series. The BDS statistic was derived from the statistical properties of the correlation integral which is used to analyze chaotic system and has been effectively used for distinguishing nonlinear structure in dynamic system from random structures. DVS (Deterministic Versus Stochastic) algorithm has been used for detecting chaos and stochastic systems and for forecasting of chaotic system. This study showed the DVS algorithm can be also used for detecting nonlinearity of the time series. In this study, the stochastic and hydrologic time series are analyzed to detect their nonlinearity. The linear and nonlinear stochastic time series generated from ARMA and TAR (Threshold Auto Regressive) models, a daily streamflow at St. Johns river near Cocoa, Florida, USA and Great Salt Lake Volume (GSL) data, Utah, USA are analyzed, daily inflow series of Soyang dam and the results are compared. The results showed the BDS statistic is a powerful tool for distinguishing between linearity and nonlinearity of the time series and DVS plot can be also effectively used for distinguishing the nonlinearity of the time series.

The Effect of Leisure Activities on Depression in Grandparents Raising Grandchildren (조손가정 내 조부모의 여가활동이 우울감에 미치는 영향)

  • Lee, Yoon-Jung
    • 한국노년학
    • /
    • v.34 no.2
    • /
    • pp.299-313
    • /
    • 2014
  • Recently, an interest on parenting stress and depression of grandparents raising grandchildren is rising according to the increase of working couple and divorce. Discussing around developmental task of elderly, one of the influencing factors on increase of grandparents' parenting stress and depression is leisure restriction. However, this factor has received far less rigorous analysis. Thus, the purpose of this article is to offer an analysis of the effect of leisure activities on depression in grandparents raising grandchildren. The data was collected from 172 grandparents raising their grandchildren in 2011 national survey results on the elderly life conditions. Their analyses were composed of descriptive statistic and multiple regression analysis. The study generated several findings. First, grandparents participated in activities for exercise and religion at a high rate and their mean score of depression was 7.1 of 15 what suggests middle level of depression. second, multiple regression analysis showed that the factor of exercise, travel experience, leisure activities satisfaction and other special leisure activities were statistically significant predictors of depression. Implication for social welfare services and programs to improve the mental health of grandparents raising their grandchildren to have positive self-awareness and attitude about life in their position and living condition for help prevent depression were discussed.

Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction (해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구)

  • Dae-yaoung Eeom;Bang-hee Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.100-103
    • /
    • 2023
  • Recently, development of maritime autonomoust surface ships and eco-friendly ships, production and evaluation research considering various marine environments is needed in the field of optimal routes as the demand for accurate and detailed real-time marine environment prediction information expands. An algorithm that can calculate the optimal route while reducing the risk of the marine environment and uncertainty in energy consumption in smart ships was developed in 2 stages. In the first stage, a profile was created by combining marine environmental information with ship location and status information within the Automatic Ship Identification System(AIS). In the second stage, a model was developed that could define the marine environment energy map using the configured profile results, A regression equation was generated by applying Random Forest among machine learning techniques to reflect about 600,000 data. The Random Forest coefficient of determination (R2) was 0.89, showing very high reliability. The Dijikstra shortest path algorithm was applied to the marine environment prediction at June 1 to 3, 2021, and to calculate the optimal safety route and express it on the map. The route calculated by the random forest regression model was streamlined, and the route was derived considering the state of the marine environment prediction information. The concept of route calculation based on real-time marine environment prediction information in this study is expected to be able to calculate a realistic and safe route that reflects the movement tendency of ships, and to be expanded to a range of economic, safety, and eco-friendliness evaluation models in the future.

  • PDF

A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering (생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법)

  • Jeong Young Sang;Ji Seung Hyun;Kwon Da Rong Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.481-492
    • /
    • 2023
  • This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.

A Study on the Creative Process of Creative Ballet <Youth> through Motion Capture Technology (모션캡처 활용을 통한 창작발레<청춘>창작과정연구)

  • Chang, So-Jung; Park, Arum
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.809-814
    • /
    • 2023
  • Currently, there is a lack of research that directly applies and integrates science and technology in the field of dance and translates it into creative work. In this study, the researcher applied motion capture to creative dance performance 'Youth' and described the process of incorporating motion capture into scenes for the performance. The research method involved utilizing practice-based research, which derives new knowledge and meaning from creative outcomes through the analysis of phenomena and experiences generated on-site. The creative ballet performance "<Youth>" consists of a total of 4 scenes, and the motion-captured video in these scenes serves as the highlight moments. It visually represents the image of a past ballerina while embodying the meaning of a scene that is both the 'past me' and the 'dream of the present.' The use of motion capture enhances the visual representation of the scenes and plays a role in increasing the audience's immersion. The dance field needs to become familiar with collaborating with scientific and technological advancements like motion capture to digitize intangible assets. It is essential to engage in experimental endeavors and continue training for such collaborations. Furthermore, through collaboration, the ongoing research should extend the scope of movement through digitized processes, performances, and performance records. This will continually confer value and meaning to the field of dance

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.133-153
    • /
    • 2023
  • In this paper, we propose a novel approach to investigating brain-signal measurement technology using Electroencephalography (EEG). Traditionally, researchers have combined EEG signals with bio-signals (BSs) to enhance the classification performance of emotional states. Our objective was to explore the synergistic effects of coupling EEG and BSs, and determine whether the combination of EEG+BS improves the classification accuracy of emotional states compared to using EEG alone or combining EEG with pseudo-random signals (PS) generated arbitrarily by random generators. Employing four feature extraction methods, we examined four combinations: EEG alone, EG+BS, EEG+BS+PS, and EEG+PS, utilizing data from two widely-used open datasets. Emotional states (task versus rest states) were classified using Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) classifiers. Our results revealed that when using the highest accuracy SVM-FFT, the average error rates of EEG+BS were 4.7% and 6.5% higher than those of EEG+PS and EEG alone, respectively. We also conducted a thorough analysis of EEG+BS by combining numerous PSs. The error rate of EEG+BS+PS displayed a V-shaped curve, initially decreasing due to the deep double descent phenomenon, followed by an increase attributed to the curse of dimensionality. Consequently, our findings suggest that the combination of EEG+BS may not always yield promising classification performance.

Utilization of Drone LiDAR for Field Investigation of Facility Collapse Accident (붕괴사고 현장조사를 위한 드론 LiDAR 활용)

  • Yonghan Jung ;Eontaek Lim ;Jaewook Suk;Seul Koo;Seongsam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.849-858
    • /
    • 2023
  • Investigating disaster sites such as earthquakes and landslides involves significant risks due to potential secondary disasters like facility collapse. In situations where direct access is challenging, there is a need to develop methods for safely acquiring high-precision 3D disaster information using light detection and ranging (LiDAR) equipped drone survey systems. In this study, the feasibility of using drone LiDAR in disaster scenarios was examined, focusing on the collapse accident at Jeongja Bridge in Bundang-gu, Seongnam City, in April 2023. High-density point clouds for the accident bridge were collected, and the bridge's 3D terrain information was reconstructed and compared to the measurement performance of 10 ground control points. The results showed horizontal and vertical root mean square error values of 0.032 m and 0.055 m, respectively. Additionally, when compared to a point cloud generated using ground LiDAR for the same target area, a vertical difference of approximately 0.08 m was observed, but overall shapes showed minimal discrepancies. Moreover, in terms of overall data acquisition and processing time, drone LiDAR was found to be more efficient than ground LiDAR. Therefore, the use of drone LiDAR in disaster sites with significant risks allows for safe and rapid onsite investigations.