• Title/Summary/Keyword: Generate Data

Search Result 3,065, Processing Time 0.032 seconds

Analysis of the effect of long-term water supply improvement by the installation of sand dams in water scarce areas (물부족 지역에서 샌드댐 설치에 의한 장기 물공급 개선 효과 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.999-1009
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area for water welfare that does not have a local water supply system. Here, water is supplied to the village by using a small-scale water supply facility that uses underground water and underground water as the source. To solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed near the valley river, and this facility has been operating since May 2022. In this study, in order to evaluate the reliability of water supply when a sand dam is assumed during a drought in the past, groundwater runoff simulation results using MODFLOW were used to generate inflow data from 2011 to 2020, an unmeasured period. After performing SWAT-K basin hydrologic modeling for the watershed upstream of the existing water intake source and the sand dam, the groundwater runoff was calculated, and the relative ratio of the monthly groundwater runoff for the previous 10 years to the monthly groundwater runoff in 2021 was obtained. By applying this ratio to the 2021 inflow time series data, historical inflow data from 2011 to 2020 were generated. As a result of analyzing the availability of water supply during extreme drought in the past for three cases of demand 20 m3/day, 50 m3/day, and 100 m3/day, it can be confirmed that the reliability of water supply increases with the installation of sand dams. In the case of 100 m3/day, it was analyzed that the reliability exceeded 90% only when the existing water intake source and the sand dam were operated in conjunction. All three operating conditions were evaluated to satisfy 50 m3/day or more of demand based on 95% reliability of water supply and 30 m3/day or more of demand based on 99% of reliability.

A preliminary assessment of high-spatial-resolution satellite rainfall estimation from SAR Sentinel-1 over the central region of South Korea (한반도 중부지역에서의 SAR Sentinel-1 위성강우량 추정에 관한 예비평가)

  • Nguyen, Hoang Hai;Jung, Woosung;Lee, Dalgeun;Shin, Daeyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.393-404
    • /
    • 2022
  • Reliable terrestrial rainfall observations from satellites at finer spatial resolution are essential for urban hydrological and microscale agricultural demands. Although various traditional "top-down" approach-based satellite rainfall products were widely used, they are limited in spatial resolution. This study aims to assess the potential of a novel "bottom-up" approach for rainfall estimation, the parameterized SM2RAIN model, applied to the C-band SAR Sentinel-1 satellite data (SM2RAIN-S1), to generate high-spatial-resolution terrestrial rainfall estimates (0.01° grid/6-day) over Central South Korea. Its performance was evaluated for both spatial and temporal variability using the respective rainfall data from a conventional reanalysis product and rain gauge network for a 1-year period over two different sub-regions in Central South Korea-the mixed forest-dominated, middle sub-region and cropland-dominated, west coast sub-region. Evaluation results indicated that the SM2RAIN-S1 product can capture general rainfall patterns in Central South Korea, and hold potential for high-spatial-resolution rainfall measurement over the local scale with different land covers, while less biased rainfall estimates against rain gauge observations were provided. Moreover, the SM2RAIN-S1 rainfall product was better in mixed forests considering the Pearson's correlation coefficient (R = 0.69), implying the suitability of 6-day SM2RAIN-S1 data in capturing the temporal dynamics of soil moisture and rainfall in mixed forests. However, in terms of RMSE and Bias, better performance was obtained with the SM2RAIN-S1 rainfall product over croplands rather than mixed forests, indicating that larger errors induced by high evapotranspiration losses (especially in mixed forests) need to be included in further improvement of the SM2RAIN.

Analysis of Optimal Locations for Resource-Development Plants in the Arctic Permafrost Considering Surface Displacement: A Case Study of Oil Sands Plants in the Athabasca Region, Canada (지표변위를 고려한 북극 동토 지역의 자원개발 플랜트 건설 최적 입지 분석: 캐나다 Athabasca 지역의 오일샌드 플랜트 사례 연구)

  • Taewook Kim;YoungSeok Kim;Sewon Kim;Hyangsun Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.275-291
    • /
    • 2023
  • Global warming has made the polar regions more accessible, leading to increased demand for the construction of new resource-development plants in oil-rich permafrost regions. The selection of locations of resource-development plants in permafrost regions should consider the surface displacement resulting from thawing and freezing of the active layer of permafrost. However, few studies have considered surface displacement in the selection of optimal locations of resource-development plants in permafrost region. In this study, Analytic Hierarchy Process (AHP) analysis using a range of geospatial information variables was performed to select optimal locations for the construction of oil-sands development plants in the permafrost region of southern Athabasca, Alberta, Canada, including consideration of surface displacement. The surface displacement velocity was estimated by applying the Small BAseline Subset Interferometric Synthetic Aperture Radar technique to time-series Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar images acquired from February 2007 to March 2011. ERA5 reanalysis data were used to generate geospatial data for air temperature, surface temperature, and soil temperature averaged for the period 2000~2010. Geospatial data for roads and railways provided by Statistics Canada and land cover maps distributed by the North American Commission for Environmental Cooperation were also used in the AHP analysis. The suitability of sites analyzed using land cover, surface displacement, and road accessibility as the three most important geospatial factors was validated using the locations of oil-sand plants built since 2010. The sensitivity of surface displacement to the determination of location suitability was found to be very high. We confirm that surface displacement should be considered in the selection of optimal locations for the construction of new resource-development plants in permafrost regions.

Prediction of Spring Flowering Timing in Forested Area in 2023 (산림지역에서의 2023년 봄철 꽃나무 개화시기 예측)

  • Jihee Seo;Sukyung Kim;Hyun Seok Kim;Junghwa Chun;Myoungsoo Won;Keunchang Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • Changes in flowering time due to weather fluctuations impact plant growth and ecosystem dynamics. Accurate prediction of flowering timing is crucial for effective forest ecosystem management. This study uses a process-based model to predict flowering timing in 2023 for five major tree species in Korean forests. Models are developed based on nine years (2009-2017) of flowering data for Abeliophyllum distichum, Robinia pseudoacacia, Rhododendron schlippenbachii, Rhododendron yedoense f. poukhanense, and Sorbus commixta, distributed across 28 regions in the country, including mountains. Weather data from the Automatic Mountain Meteorology Observation System (AMOS) and the Korea Meteorological Administration (KMA) are utilized as inputs for the models. The Single Triangle Degree Days (STDD) and Growing Degree Days (GDD) models, known for their superior performance, are employed to predict flowering dates. Daily temperature readings at a 1 km spatial resolution are obtained by merging AMOS and KMA data. To improve prediction accuracy nationwide, random forest machine learning is used to generate region-specific correction coefficients. Applying these coefficients results in minimal prediction errors, particularly for Abeliophyllum distichum, Robinia pseudoacacia, and Rhododendron schlippenbachii, with root mean square errors (RMSEs) of 1.2, 0.6, and 1.2 days, respectively. Model performance is evaluated using ten random sampling tests per species, selecting the model with the highest R2. The models with applied correction coefficients achieve R2 values ranging from 0.07 to 0.7, except for Sorbus commixta, and exhibit a final explanatory power of 0.75-0.9. This study provides valuable insights into seasonal changes in plant phenology, aiding in identifying honey harvesting seasons affected by abnormal weather conditions, such as those of Robinia pseudoacacia. Detailed information on flowering timing for various plant species and regions enhances understanding of the climate-plant phenology relationship.

A Study on Database Design Model for Production System Record Management Module in DataSet Record Management (데이터세트 기록관리를 위한 생산시스템 기록관리 모듈의 DB 설계 모형연구)

  • Kim, Dongsu;Yim, Jinhee;Kang, Sung-hee
    • The Korean Journal of Archival Studies
    • /
    • no.78
    • /
    • pp.153-195
    • /
    • 2023
  • RDBMS is a widely used database system worldwide, and the term dataset refers to the vast amount of data produced in administrative information systems using RDBMS. Unlike business systems that mainly produce administrative documents, administrative information systems generate records centered around the unique tasks of organizations. These records differ from traditional approval documents and metadata, making it challenging to seamlessly transfer them to standard record management systems. With the 2022 revision of the 'Public Records Act Enforcement Decree,' dataset was included in the types of records for which only management authority is transferred. The core aspect of this revision is the need to manage the lifecycle of records within administrative information systems. However, there has been little exploration into how to manage dataset within administrative information systems. As a result, this research aims to design a database for a record management module that needs to be integrated into administrative information systems to manage the lifecycle of records. By modifying and supplementing ISO 16175-1:2020, we are designing an "human resource management system" and identifying and evaluating personnel management dataset. Through this, we aim to provide a concrete example of record management within administrative information systems. It's worth noting that the prototype system designed in this research has limitations in terms of data volume compared to systems currently in use within organizations, and it has not yet been validated by record researchers and IT developers in the field. However, this endeavor has allowed us to understand the nature of dataset and how they should be managed within administrative information systems. It has also affirmed the need for a record management module's database within administrative information systems. In the future, once a complete record management module is developed and standards are established by the National Archives, it is expected to become a necessary module for organizations to manage dataset effectively.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Word-of-Mouth Effect for Online Sales of K-Beauty Products: Centered on China SINA Weibo and Meipai (K-Beauty 구전효과가 온라인 매출액에 미치는 영향: 중국 SINA Weibo와 Meipai 중심으로)

  • Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.197-218
    • /
    • 2019
  • In addition to economic growth and national income increase, China is also experiencing rapid growth in consumption of cosmetics. About 67% of the total trade volume of Chinese cosmetics is made by e-commerce and especially K-Beauty products, which are Korean cosmetics are very popular. According to previous studies, 80% of consumer goods such as cosmetics are affected by the word of mouth information, searching the product information before purchase. Mostly, consumers acquire information related to cosmetics through comments made by other consumers on SNS such as SINA Weibo and Wechat, and recently they also use information about beauty related video channels. Most of the previous online word-of-mouth researches were mainly focused on media itself such as Facebook, Twitter, and blogs. However, the informational characteristics and the expression forms are also diverse. Typical types are text, picture, and video. This study focused on these types. We analyze the unstructured data of SINA Weibo, the SNS representative platform of China, and Meipai, the video platform, and analyze the impact of K-Beauty brand sales by dividing online word-of-mouth information with quantity and direction information. We analyzed about 330,000 data from Meipai, and 110,000 data from SINA Weibo and analyzed the basic properties of cosmetics. As a result of analysis, the amount of online word-of-mouth information has a positive effect on the sales of cosmetics irrespective of the type of media. However, the online videos showed higher impacts than the pictures and texts. Therefore, it is more effective for companies to carry out advertising and promotional activities in parallel with the existing SNS as well as video related information. It is understood that it is important to generate the frequency of exposure irrespective of media type. The positiveness of the video media was significant but the positiveness of the picture and text media was not significant. Due to the nature of information types, the amount of information in video media is more than that in text-oriented media, and video-related channels are emerging all over the world. In particular, China has made a number of video platforms in recent years and has enjoyed popularity among teenagers and thirties. As a result, existing SNS users are being dispersed to video media. We also analyzed the effect of online type of information on the online cosmetics sales by dividing the product type of cosmetics into basic cosmetics and color cosmetics. As a result, basic cosmetics had a positive effect on the sales according to the number of online videos and it was affected by the negative information of the videos. In the case of basic cosmetics, effects or characteristics do not appear immediately like color cosmetics, so information such as changes after use is often transmitted over a period of time. Therefore, it is important for companies to move more quickly to issues generated from video media. Color cosmetics are largely influenced by negative oral statements and sensitive to picture and text-oriented media. Information such as picture and text has the advantage and disadvantage that the process of making it can be made easier than video. Therefore, complaints and opinions are generally expressed in SNS quickly and immediately. Finally, we analyzed how product diversity affects sales according to online word of mouth information type. As a result of the analysis, it can be confirmed that when a variety of products are introduced in a video channel, they have a positive effect on online cosmetics sales. The significance of this study in the theoretical aspect is that, as in the previous studies, online sales have basically proved that K-Beauty cosmetics are also influenced by word-of-mouth. However this study focused on media types and both media have a positive impact on sales, as in previous studies, but it has been proven that video is more informative and influencing than text, depending on media abundance. In addition, according to the existing research on information direction, it is said that the negative influence has more influence, but in the basic study, the correlation is not significant, but the effect of negation in the case of color cosmetics is large. In the case of temporal fashion products such as color cosmetics, fast oral effect is influenced. In practical terms, it is expected that it will be helpful to use advertising strategies on the sales and advertising strategy of K-Beauty cosmetics in China by distinguishing basic and color cosmetics. In addition, it can be said that it recognized the importance of a video advertising strategy such as YouTube and one-person media. The results of this study can be used as basic data for analyzing the big data in understanding the Chinese cosmetics market and establishing appropriate strategies and marketing utilization of related companies.

Qualitative Research on Korean Baby-Boomer Generation Middle-Aged Women's Attitude Toward Their Lives - Based on Middle-Class Seoul Residents - (한국의 베이비부머세대 중년여성이 삶에서 추구하는 가치에 대한 질적연구 - 서울 거주 중산층을 중심으로 -)

  • Lee, Ji Hyun;Kim, Sun Woo
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.127-156
    • /
    • 2012
  • A lot of interest in the baby-boomer generation, those who were born after World War II, has emerged since their retirement has been accelerated. The retirement of baby-boomers has caused many health, public welfare, social policy and family relationship problems. However, their increased purchasing power has made them more attractive consumers than any other generation, and they have become a fascinating niche market in the depressed economy. This research selected middle-class women of the baby-boomer generation who have had powerful effects on society and have emerged as an attractive niche market, and attempted to understand their lives intensively. Based on research activities, the purpose of this research is to identify baby-boomer generation middle-aged women's life values. Qualitative research methodology was used to achieve research objectives, and this research aimed to suggest marketing implications to connected industries based on the research results. The research objectives are as follows. 1. understanding the lives of baby-boomer middle-class women who have powerful effects on socio-economic phenomena 2. identifying the life values of baby-boomer middle-class women 3. generating marketing implications based on an understanding of baby-boomer middle-class women's lives and life values This research conducted FGIs(focus group interviews), one of the qualitative research methodologies, to figure out baby-boomer middle-class women's life values intensively and selected 10 women living in Seoul for data collection. The qualitative data of collected FGIs were analyzed with spiral data analysis methodology proposed by Creswell(2007). The most effective factors to influence these middle-class women's lives powerfully were 'time' and 'independence'. Their consciousness of the importance of using time affects their life pattern generally, and their independence also impacts greatly on the way they exploit time and on their diverse relationships. They maximized their self-realization and showed long-term partnership with their surrounding circumstances because of those effective factors. Baby-boomer middle-class women's self-realization was divided into two areas. One was their outside activities and another was perfect management of their physical appearance and home interior. Like the results of this research, their need for social entrance will be reinforced more strongly since their internal and external activities aim for the achievement of self-realization. In addition, this research suggests that baby-boomer middle-class women's activities are connected with their management of their physical appearance and home interior decorations, and that such management is caused not only by a simple interest in fashion and beauty but also a profound desire for self-realization. On account of their consciousness, which is different from other generations, Korean baby-boomer middle-class women are able to maintain positive partnerships with their surrounding circumstances; however, they also show ambivalent emotions to retain effective partnerships. To overcome those stressful situations, they make greater efforts to keep up their health and youth, and also engage in diverse activities to maintain their mental health. Finally, they generate positive attitudes toward their economic situation and extra time to develop self-realization and pursue happy, youthful and healthy lives. Based on those results, this study suggests the following implications. First, industries targeting the baby-boomer generation should develop innovative products and services which help the baby-boomer generation maximize their efficiency of time since time is one of the most important factors powerfully impacting the baby-boomer generation. They will engage in various activities to fill up their extra time and consume helpful products and services. Second, such industries should supply the baby-boomer generation with opportunities which propose new ways of self-realization since this generation shows a great desire for self-realization because of their self-efficacy. With customized strategies of satisfying their needs, the baby-boomer generation would discover opportunities to utilize their abilities, relationships and aesthetic senses, and industries would develop a niche market. Third, market segmentations which target the baby-boomer generation's desire to maintain their physical appearance and home interior should be executed since such activities are the main strategies to develop this generation's self-realization. The baby-boomer generation's desire to study those areas would be expanded, and those education systems should produce innovative products and services targeting the baby-boomer generation. This implication also offers to government officials new policies related with the baby-boomer generation. This exploratory study utilized qualitative research methodology to understand baby-boomer middle-class women's lives, and proposed propositions and limitations for further researches. As for the limitations, first, it is hard to generalize the research results so that they may apply to all areas and economic classes of the baby-boomer generation since this research selected only 10 women living in Seoul for the data collection process. To overcome this limitation, extended data collections of subjects from diverse regions and economic classes should be designed. Second, quantitative research should be conducted to supplement the findings with validities. Third, this research focused on only general ideas of the baby-boomer generation's lives since the range of this study was focused on their overall lives. Therefore, intensive research related to specific areas of their lives should be conducted.

  • PDF

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device (모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실)

  • Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2012
  • In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.