Jung Wan Choe;Jong Jin Hyun;Seong-Jin Son;Seung-Hak Lee
Clinical Endoscopy
/
v.57
no.4
/
pp.476-485
/
2024
Background/Aims: Sedation has become a standard practice for patients undergoing gastrointestinal (GI) endoscopy. However, considering the serious cardiopulmonary adverse events associated with sedatives, it is important to identify patients at high risk. Machine learning can generate reasonable prediction for a wide range of medical conditions. This study aimed to evaluate the risk factors associated with sedation during GI endoscopy and develop a predictive model for hypoxia during endoscopy under sedation. Methods: This prospective observational study enrolled 446 patients who underwent sedative endoscopy at the Korea University Ansan Hospital. Clinical data were used as predictor variables to construct predictive models using the random forest method that is a machine learning algorithm. Results: Seventy-two of the 446 patients (16.1%) experienced life-threatening hypoxia requiring immediate medical intervention. Patients who developed hypoxia had higher body weight, body mass index (BMI), neck circumference, and Mallampati scores. Propofol alone and higher initial and total dose of propofol were significantly associated with hypoxia during sedative endoscopy. Among these variables, high BMI, neck circumference, and Mallampati score were independent risk factors for hypoxia. The area under the receiver operating characteristic curve for the random forest-based predictive model for hypoxia during sedative endoscopy was 0.82 (95% confidence interval, 0.79-0.86) and displayed a moderate discriminatory power. Conclusions: High BMI, neck circumference, and Mallampati score were independently associated with hypoxia during sedative endoscopy. We constructed a model with acceptable performance for predicting hypoxia during sedative endoscopy.
Journal of the Korea Institute of Building Construction
/
v.24
no.4
/
pp.507-515
/
2024
Recent advancements in Building Information Modeling(BIM) have significantly impacted the construction industry, driving competitiveness and innovation. However, rebar construction, a critical component influencing project quality and cost, has lagged behind in BIM adoption. Traditional methods relying heavily on 2D drawings for rebar detailing have hindered efficiency and introduced potential errors. This paper presents a novel system designed to automate the detailed modeling of rebar, thereby promoting BIM integration within rebar construction and optimizing construction management processes. The system leverages confirmed structural drawings from the post-structural design phase to automatically generate intricate rebar models for columns and beams. To ensure adherence to domestic structural design standards, the system is developed using C# programming language and the Revit API. By automating rebar modeling, this system aims to minimize human error, reduce labor-intensive tasks, and enhance overall rebar construction efficiency through the effective utilization of generated rebar model data.
Due to global CO2 emission reductions and fuel efficiency regulations, the trend toward transitioning from internal combustion engine vehicles to electric vehicles (EVs) has accelerated. Consequently, the problem of EV failures has become a focal point of active research. The parasitic capacitance generated during motor-shaft rotation induces voltage that deteriorates the raceway and ball surfaces of bearings, causing electrical damage in EVs. Despite numerous attempts to address this issue, most studies have been conducted under high viscosity lubricant and low load conditions. However, due to factors such as high-speed operation, rapid acceleration and deceleration, motor heating, and motor system-decelerator integration, current EV applications have shown diminished stability in lubrication films of motor bearings, thereby leveraging the investigation to address the risk of electrical damage. This study investigates the electrical damage to rolling bearing elements in EV motor drive systems. The experimental analysis focuses on the effects of electric currents and operational loads on bearing integrity. A test rig is designed to generate high-rate voltage specific to a motor system's parasitic capacitance, and bearing samples are exposed to these currents for specified durations. Component evaluation involves visual inspections and vibration measurements. In addition, a predictive model for electrical failure is developed based on accumulated data, which demonstrates the ability to predict the likelihood of electrical failure relative to the duration and intensity of current exposure. This in turn reduces uncertainties in practical applications regarding electrical erosion modes.
This paper discusses the use of GPT and GPT API for prompt engineering in the development of the interactive smart device lock screen application "Smart Lock," aimed at enhancing literacy among young children and lower-grade elementary and middle school students during critical language development periods. In an era where media usage via smartphones is widespread among children, smartphone-based media is often cited as a primary cause of declining literacy. This study proposes an application that simulates conversations with parents as a tool for improving literacy, providing an environment conducive to literacy enhancement through smartphone use. Generative AI GPT was employed to create literacy-improving problems. Using pre-generated data, situational dialogues with parents were presented, and prompt engineering was utilized to generate questions for the application. The response quality was improved through parameter tuning and function calling processes. This study investigates the potential of literacy improvement education using generative AI through the development process of interactive applications.
This research aims to develop high-quality generative AI services by overcoming the limitations of existing Retrieval-Augmented Generation (RAG) models and implementing an enhanced graph-based RAG system to improve knowledge-based question answering (QA) systems. While traditional RAG models demonstrate high accuracy and fluency by utilizing retrieved information, their accuracy can be compromised due to the use of pre-loaded knowledge without rework. Additionally, the inability to incorporate real-time data after the RAG configuration leads to a lack of contextual understanding and potential biased information. To address these limitations, this study implements an enhanced RAG system utilizing graph technology. This system is designed to efficiently search and utilize information. In particular, LangGraph is employed to evaluate the reliability of retrieved information and to generate more accurate and improved answers by integrating various information. Furthermore, the specific operation method, key implementation steps, and case studies are presented with implementation code and verification results to enhance understanding of Advanced RAG technology. This research provides practical guidelines for actively implementing enterprise services utilizing Advanced RAG, making it significant.
The Transactions of the Korea Information Processing Society
/
v.13
no.10
/
pp.492-496
/
2024
Cats are known to express their emotions through a variety of vocalizations during interactions. These sounds reflect their emotional states, making the understanding and interpretation of these sounds crucial for more effective communication. Recent advancements in artificial intelligence has introduced research related to emotion recognition, particularly focusing on the analysis of voice data using deep learning models. Building on this background, the study aims to develop a deep learning system that classifies and generates cat sounds based on their emotional content. The classification model is trained to accurately categorize cat vocalizations by emotion. The sound generation model, which uses deep learning based models such as SampleRNN, is designed to produce cat sounds that reflect specific emotional states. The study finally proposes an integrated system that takes recorded cat vocalizations, classify them by emotion, and generate cat sounds based on user requirements.
PURPOSE. Studies about success of FPDs (fixed partial dentures) mostly include restorations built by different clinicians. This results in limited comparability of the data. The aim of this study was to evaluate complications of all-ceramic FPDs built by 1 dentist between 2011 to 2023. MATERIALS AND METHODS. 342 all-ceramic FPDs were observed during follow-up care. 48 patients received 262 single crowns, 59 bridges and 21 veneers. Because of the different lengths of the bridges, units were defined as restored or replaced tooth. 465 units performed by the same dentist from Nov 2011 to Nov 2022 were included. Influencing factors "restoration", "construction", "abutment", "localization", "vitality" and "application period" were evaluated using Kaplan-Meier Analysis and Log-Rank Tests. RESULTS. 406 units (87.3 %) showed no complication. 7 correctable chippings (1.5 %) and 10 recementable decementations (2.1 %) occurred. Six decemented units got lost (1.3 %). 21 units failed due to fatal fracture (4.5 %). Crown margin complications, such as secondary caries, occurred in 15 units (3.2 %). Comparing the influencing factors resulted in higher complication rates of veneers (P < .001), of monolithic ceramics (P ≤ .050) and of molar-restorations (P = .047). The application period had no influence on the success and survival rate. CONCLUSION. Overall, all-ceramic FPDs showed good clinical results. Although less complications were observed with modern restorations, these more often led to complete failure. To generate evidence-based recommendations, further studies are needed to evaluate the mid- and short-term success and survival of current all-ceramic restorations.
Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.
Research in dam inflow prediction has actively explored the utilization of data-driven machine learning and deep learning (ML&DL) tools across diverse domains. Enhancing not just the inherent model performance but also accounting for model characteristics and preprocessing data are crucial elements for precise dam inflow prediction. Particularly, existing rainfall data, derived from snowfall amounts through heating facilities, introduces distortions in the correlation between snow accumulation and rainfall, especially in dam basins influenced by snow accumulation, such as Soyang Dam. This study focuses on the preprocessing of rainfall data essential for the application of ML&DL models in predicting dam inflow in basins affected by snow accumulation. This is vital to address phenomena like reduced outflow during winter due to low snowfall and increased outflow during spring despite minimal or no rain, both of which are physical occurrences. Three machine learning models (SVM, RF, LGBM) and two deep learning models (LSTM, TCN) were built by combining rainfall and inflow series. With optimal hyperparameter tuning, the appropriate model was selected, resulting in a high level of predictive performance with NSE ranging from 0.842 to 0.894. Moreover, to generate rainfall correction data considering snow accumulation, a simulated snow accumulation algorithm was developed. Applying this correction to machine learning and deep learning models yielded NSE values ranging from 0.841 to 0.896, indicating a similarly high level of predictive performance compared to the pre-snow accumulation application. Notably, during the snow accumulation period, adjusting rainfall during the training phase was observed to lead to a more accurate simulation of observed inflow when predicted. This underscores the importance of thoughtful data preprocessing, taking into account physical factors such as snowfall and snowmelt, in constructing data models.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.43
no.6
s.312
/
pp.28-35
/
2006
Statistical models of shape variability based on active shape models (ASMs) have been successfully utilized to perform segmentation and recognition tasks in two-dimensional (2D) images. Three-dimensional (3D) model-based approaches are more promising than 2D approaches since they can bring in more realistic shape constraints for recognizing and delineating the object boundary. For 3D model-based approaches, however, building the 3D shape model from a training set of segmented instances of an object is a major challenge and currently it remains an open problem in building the 3D shape model, one essential step is to generate a point distribution model (PDM). Corresponding landmarks must be selected in all1 training shapes for generating PDM, and manual determination of landmark correspondences is very time-consuming, tedious, and error-prone. In this paper, we propose a novel automatic method for generating 3D statistical shape models. Given a set of training 3D shapes, we generate a 3D model by 1) building the mean shape fro]n the distance transform of the training shapes, 2) utilizing a tetrahedron method for automatically selecting landmarks on the mean shape, and 3) subsequently propagating these landmarks to each training shape via a distance labeling method. In this paper, we investigate the accuracy and compactness of the 3D model for the human liver built from 50 segmented individual CT data sets. The proposed method is very general without such assumptions and can be applied to other data sets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.