A series of multispectral high-resolution Korean Multi-Purpose Satellite (KOMPSAT) images were analyzed to detect the geographical changes in four different tidal flats in the west coast of South Korea. The method of unsupervised classification was used to generate a series of land use/land cover (LULC) maps from the satellite images, which were used as the input of the temporal trajectory analysis to detect the temporal change of coastal wetlands and its association with natural and anthropogenic activities. The accurately classified LULC maps extracted from the KOMPSAT images indicate that these multispectral high-resolution satellite data is highly applicable to generate good quality thematic maps for extracting wetlands. The result of the trajectory analysis showed that, while the tidal flat area of Gyeonggi and Jeollabuk provinces was estimated to have changed due to tidal effects, the reductive trajectory of the wetland areas belonging to the Saemangeum province was caused by a high degree of human-induced activities including large reclamation and urbanization. The conservation of the Jeungdo Wetland Protected Area in Jeollanam province revealed that the social and environmental policies can effectively protect coastal wetlands from degradation. Therefore, monitoring for wetland change using high resolution KOMPSAT is expected to be useful to coastal environment management and policy making.
One of the goals of tumor immunotherapy is to generate immune cells with potent anti-tumor activity through in vitro techniques using peripheral blood collected from patients. However, cancer patients generally have poor immunological function. Thus using patient T cells, which have reduced in vitro proliferative capabilities and less tumor cell killing activity to generate lymphokine-activated killer (LAK) cells, fails to achieve optimal clinical efficacy. Interleukin-2 (IL-2) is a potent activating cytokine for both T cells and natural killer cells. Thus, this study aimed to identify optimal donors for allogeneic LAK cell immunotherapy based on single nucleotide polymorphisms (SNP) in the IL-2 and IL-2R genes. IL-2 and IL-2R SNPs were analyzed using HRM-PCR. LAK cells were derived from peripheral blood mononuclear cells by culturing with IL-2. The frequency and tumor-killing activity of LAK cells in each group were analyzed by flow cytometry and tumor cell killing assays, respectively. Regarding polymorphisms at IL-2-330 (rs2069762) T/G, LAK cells from GG donors had significantly greater proliferation, tumor-killing activity, and IFN-${\gamma}$ production than LAK cells from TT donors (P<0.05). Regarding polymorphisms at IL-2R rs2104286 A/G, LAK cell proliferation and tumor cell killing were significantly greater in LAK cells from AA donors than GG donors (P<0.05). These data suggest that either IL-2-330(rs2069762)T/G GG donors or IL-2R rs2104286 A/G AA donors are excellent candidates for allogeneic LAK cell immunotherapy.
Journal of the Korean Society for Library and Information Science
/
v.23
/
pp.207-261
/
1992
The purpose of this study is (1) to design and test a database which can be automatically classified, and (2) to generate automatic classification number by processing the keywords in titles using the code combination method of Colon Classification(CC) as well as an automatic recognition of subjects in order to develop an automatic classification system (Auto BC System) based on CC which can be applied to any research library. To conduct this study, 1,510 words in the fields of agricultrue and medicine were selected, analized in terms of [P], [M], [E], [S], [T] employed in CC, and included in a database for classification. For the above-mentioned subject fields, the principle of an automatic classification was specified in order to generate automatic classification codes as well as to perform an automatic subject recognition of the titles included. Whenever necessary, editing, deleting, appending and reindexing of a database can be made in this automatic classification system. Appendix 1 shows the result of the automatic classification of books in the fields of agriculture and medicine. The results of the study are summarized below. 1. The classification number for the title of a book can be automatically generated by using the facet principles of Colon Classification. 2. The automatic subject recognition of a book is achieved by designing a database making use of a globe-principle, and by specifying the subject field for each word. 3. The automatic subject-recognition of input data is achieved by measuring the number of searched words by each subject field. 4. The combination of classification numbers is achieved by flowcharting of classification formular of each subject field. 5. The efficient control of classification numbers is achieved by designing control codes on the database for classification. 6. The automatic classification by means of Auto BC has been proved to be successful in the research library concentrating on a Single field. The general library may have some problem in employing this system. The automatic classification through Auto BC has the following advantages: 1. Speed of the classification process can be improve. 2. The revision or updating of classification schemes can be facilitated. 3. Multiple concepts can be expressed in a single classification code. 4. The consistency of classification can be achieved with the classification formular rather than the classifier's subjective judgement. 5. A user's retrieving process can be made after combining the classification numbers through keywords relating to the material to be searched. 6. The materials can be classified by a librarian without subject backgrounds. 7. The large body of materials can be quickly classified by means of a machine processing. 8. This automatic classification is expected to make a good contribution to design of the total system for library operations. 9. The information flow among libraries can be promoted owing to the use of the same program for the automatic classification.
Recently, the smart applications, such as smart phone and smart TV, become a hot issue in IT consumer markets. In particular, the smart TV provides 3D video services, hence efficient coding methods for 3D video data are required. Three-dimensional (3D) video involves stereoscopic or multi-view images to provide depth experience through 3D display systems. Binocular cues are perceived by rendering proper viewpoint images obtained at slightly different view angles. Since the number of viewpoints of the multi-view video is limited, 3D display devices should generate arbitrary viewpoint images using available adjacent view images. In this paper, after we explain a view synthesis method briefly, we propose a new algorithm to compensate view synthesis errors around object boundaries. We describe a 3D warping technique exploiting the depth map for viewpoint shifting and a hole filling method using multi-view images. Then, we propose an algorithm to remove boundary noises that are generated due to mismatches of object edges in the color and depth images. The proposed method reduces annoying boundary noises near object edges by replacing erroneous textures with alternative textures from the other reference image. Using the proposed method, we can generate perceptually inproved images for 3D video systems.
In this article we examine a unique data set of intraday fair disclosure(FD) releases to shed light on market efficiency within the trading day. Specifically, this paper analyze the response of stock prices on fair disclosure disseminated in real-time through KIND(Korea Investor's Network for Disclosure) on Korea stock exchange during the period from January 2003 to September 2004. We find that the prices of stock experiences a statistically and economically significant increase beginning seconds after the fair disclosure is initially announced and lasting approximately two minutes. The stock price responds more strongly to fair disclosure on smaller firm but the response to fair disclosure on the largest firm stock is more gradual, lasting five minutes. We also examine the profitability of a short-term trading strategy based on dissemination of fair disclosure. After controlling for trading costs we find that trader who execute a trade following initial disclosure generate negative profits, but trader buying stock before initial disclosure realize statistically significant positive profit after two minute of disclosure. Summarizing overall results, our evidence supports that security prices on Korea stock exchange reflects all available information within two minutes and the Korea stock market is semi-strongly efficient enough that a trader cannot generate profits based on widely disseminated news unless he acts almost immediately.
Journal of the Computational Structural Engineering Institute of Korea
/
v.30
no.4
/
pp.307-312
/
2017
In this study, we proposed a method to generate a maintenance documents for railway track through Construction Operations Building information exchange(COBie) which is a subset of Industry Foundation Classes(IFC), a data model for Building Information Modeling(BIM). In order to define the items necessary for railway track maintenance document generation, we analyzed the guideline of maintenance and management to track by the Ministry of Land, Infrastructure and Transport(MLTM), and defined the way to refer to the information items in the COBie spreadsheet. The additional properties not supported in IFC, were created for generation of an Information model that reflecting maintenance information items of railway track by applying user-defined property set within the IFC framework. An IFC-based Information model reflecting the user-defined property was implemented through BIM software, and rail track maintenance information items were transferred to COBie spreadsheet according to the defined approach. It is tested that the information can be transferred from the IFC-based as-built model to the COBie spreadsheet, which can be used to generate the necessary documents for railway facility maintenance work.
This study examines whether firms with tax avoidance of Corporate Social Responsibility(CSR) performance is tempered by the extent firms engage in CEO turnovers. Considering the increasing interest in CSR activities of the firm to secure sustainable growth of national economy, this paper investigates the benefit and cost of CSR activities by combining the agency theory using the firm level data. Prior studies document that investors positively value tax avoidance. The rationale for this finding is that tax avoidance provides cash savings that can be used by firm managers to generate future shareholder wealth. Prior studies also show that investors' valuations are sensitive to the risk of future negative tax outcomes. Assuming that many types of CSR performances are low risk, low yielding uses of firm resources, we posit that higher levels of CSR performance may signal to investors that cash generated via tax avoidance has not been fully used to generate a return sufficient to offset the risk associated with aggressive tax planning strategies. Consistent with this argument, we predict and find that the positive association between CSR performance and tax avoidance is significantly weakened when firms have higher positive levels of CEO turnovers. Further, we predict and find that 'philanthropic' types of CSR activities in particular are associated with investor discounting of tax avoidance. We interpret our results as suggesting the equity market views CSR activities to be ostensibly funded through cash savings generated via tax avoidance.
Recently, a lot of studies have been made about the methods used to generate turbulent velocity fields stochastically in order to effectively predict broadband flow noise. Among them, the FRPM (Fast Random Particle Mesh) method which generates turbulence with specific statistical properties using turbulence kinetic energy and dissipation obtained from the steady solution of the RANS (Reynolds Averaged Navier-Stokes) equations has been successfully applied. However, the FRPM method cannot be applied to the flow noise problems involving intrinsic unsteady characteristics such as centrifugal fan. In this paper, to effectively predict the broadband noise generated by centrifugal fan, U-FRPM (unsteady FRPM) method is developed by extending the FRPM method to be combined with the unsteady numerical solutions of the unsteady RANS equations to generate the turbulence considered as broadband noise sources. Firstly, an unsteady flow field is obtained from the unsteady RANS equations through CFD (Computational Fluid Dynamics). Then, noise sources are generated using the U-FRPM method combined with acoustic analogy. Finally, the linear propagation model which is realized through BEM (Boundary Element Method) is combined with the generated sources to predict broadband noise at the listeners' position. The proposed technique is validated to compare its prediction result with the measured data.
In this paper, we propose a novel deep learning-based motion reconstruction approach that facilitates the generation of full-body motions, including finger motions, while also enabling the online adjustment of motion generation delays. The proposed method combines the Vive Tracker with a deep learning method to achieve more accurate motion reconstruction while effectively mitigating foot skating issues through the use of an Inverse Kinematics (IK) solver. The proposed method utilizes a trained AutoEncoder to reconstruct character body motions using tracker data in real-time while offering the flexibility to adjust motion generation delays as needed. To generate hand motions suitable for the reconstructed body motion, we employ a Fully Connected Network (FCN). By combining the reconstructed body motion from the AutoEncoder with the hand motions generated by the FCN, we can generate full-body motions of characters that include hand movements. In order to alleviate foot skating issues in motions generated by deep learning-based methods, we use an IK solver. By setting the trackers located near the character's feet as end-effectors for the IK solver, our method precisely controls and corrects the character's foot movements, thereby enhancing the overall accuracy of the generated motions. Through experiments, we validate the accuracy of motion generation in the proposed deep learning-based motion reconstruction scheme, as well as the ability to adjust latency based on user input. Additionally, we assess the correction performance by comparing motions with the IK solver applied to those without it, focusing particularly on how it addresses the foot skating issue in the generated full-body motions.
The Journal of the Convergence on Culture Technology
/
v.9
no.6
/
pp.967-971
/
2023
Recently, a variety of AI-based platform services are available, and one of them is ChatGPT that processes a large quantity of data in the natural language and generates an answer after self-learning. ChatGPT can perform various tasks including software programming in the IT sector. Particularly, it may help generate a simple program and correct errors using C Language, which is a major programming language. Accordingly, it is expected that ChatGPT is capable of effectively using Verilog HDL, which is a hardware language created in C Language. Verilog HDL synthesis, however, is to generate imperative sentences in a logical circuit form and thus it needs to be verified whether the products are executed properly. In this paper, we aim to select small-scale logical circuits for ease of experimentation and to verify the results of circuits generated by ChatGPT and human-designed circuits. As to experimental environments, Xilinx ISE 14.7 was used for module modeling, and the xc3s1000 FPGA chip was used for module embodiment. Comparative analysis was performed on the use area and processing time of FPGA to compare the performance of ChatGPT products and Verilog HDL products.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.