• Title/Summary/Keyword: Generalized vector model

Search Result 63, Processing Time 0.022 seconds

Estimation of nonlinear GARCH-M model (비선형 평균 일반화 이분산 자기회귀모형의 추정)

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.831-839
    • /
    • 2010
  • Least squares support vector machine (LS-SVM) is a kernel trick gaining a lot of popularities in the regression and classification problems. We use LS-SVM to propose a iterative algorithm for a nonlinear generalized autoregressive conditional heteroscedasticity model in the mean (GARCH-M) model to estimate the mean and the conditional volatility of stock market returns. The proposed method combines a weighted LS-SVM for the mean and unweighted LS-SVM for the conditional volatility. In this paper, we show that nonlinear GARCH-M models have a higher performance than the linear GARCH model and the linear GARCH-M model via real data estimations.

Generalized Vector Control with Reactive Power Control for Brushless Doubly-Fed Induction Machines

  • Duan, Qiwei;Liu, Shi;Schlaberg, H. Inaki;Long, Teng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.817-825
    • /
    • 2018
  • In this paper, a current hysteresis control with good decoupling properties for doubly-fed brushless induction machines (BDFIMs) has been proposed based on a generalized vector model. The independent control of the reactive power and speed for BDFIMs has been achieved by controlling the d-axis and the q-axis current of the control windings (CW). The proposed vector control method has been developed for the power winding (PW) flux frame. Experimental verification of a type Y180M-4 BDFIM prototype with 1/4 pole-pairs has been presented. Evidence of its good performance has been shown through experimental results.

Mixed-effects LS-SVR for longitudinal dat

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.363-369
    • /
    • 2010
  • In this paper we propose a mixed-effects least squares support vector regression (LS-SVR) for longitudinal data. We add a random-effect term in the optimization function of LS-SVR to take random effects into LS-SVR for analyzing longitudinal data. We also present the model selection method that employs generalized cross validation function for choosing the hyper-parameters which affect the performance of the mixed-effects LS-SVR. A simulated example is provided to indicate the usefulness of mixed-effect method for analyzing longitudinal data.

Semiparametric support vector machine for accelerated failure time model

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.765-775
    • /
    • 2010
  • For the accelerated failure time (AFT) model a lot of effort has been devoted to develop effective estimation methods. AFT model assumes a linear relationship between the logarithm of event time and covariates. In this paper we propose a semiparametric support vector machine to consider situations where the functional form of the effect of one or more covariates is unknown. The proposed estimating equation can be computed by a quadratic programming and a linear equation. We study the effect of several covariates on a censored response variable with an unknown probability distribution. We also provide a generalized approximate cross-validation method for choosing the hyper-parameters which affect the performance of the proposed approach. The proposed method is evaluated through simulations using the artificial example.

Estimation of structural vector autoregressive models

  • Lutkepohl, Helmut
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.421-441
    • /
    • 2017
  • In this survey, estimation methods for structural vector autoregressive models are presented in a systematic way. Both frequentist and Bayesian methods are considered. Depending on the model setup and type of restrictions, least squares estimation, instrumental variables estimation, method-of-moments estimation and generalized method-of-moments are considered. The methods are presented in a unified framework that enables a practitioner to find the most suitable estimation method for a given model setup and set of restrictions. It is emphasized that specifying the identifying restrictions such that they are linear restrictions on the structural parameters is helpful. Examples are provided to illustrate alternative model setups, types of restrictions and the most suitable corresponding estimation methods.

Partially linear support vector orthogonal quantile regression with measurement errors

  • Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.209-216
    • /
    • 2015
  • Quantile regression models with covariate measurement errors have received a great deal of attention in both the theoretical and the applied statistical literature. A lot of effort has been devoted to develop effective estimation methods for such quantile regression models. In this paper we propose the partially linear support vector orthogonal quantile regression model in the presence of covariate measurement errors. We also provide a generalized approximate cross-validation method for choosing the hyperparameters and the ratios of the error variances which affect the performance of the proposed model. The proposed model is evaluated through simulations.

Tuning the Architecture of Support Vector Machine: The Case of Bankruptcy Prediction

  • Min, Jae-H.;Jeong, Chul-Woo;Kim, Myung-Suk
    • Management Science and Financial Engineering
    • /
    • v.17 no.1
    • /
    • pp.19-43
    • /
    • 2011
  • Tuning the architecture of SVM (support vector machine) is to build an SVM model of better performance. Two different tuning methods of the grid search and the GA (genetic algorithm) have been addressed in the literature, each of which has its own methodological pros and cons. This paper suggests a combined method for tuning the architecture of SVM models, which employs the GAM (generalized additive models), the grid search, and the GA in sequence. The GAM is used for selecting input variables, and the grid search and the GA are employed for finding optimal parameter values of the SVM models. Applying the method to a bankruptcy prediction problem, we show that SVM model tuned by the proposed method outperforms other SVM models.

Censored varying coefficient regression model using Buckley-James method

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1167-1177
    • /
    • 2017
  • The censored regression using the pseudo-response variable proposed by Buckley and James has been one of the most well-known models. Recently, the varying coefficient regression model has received a great deal of attention as an important tool for modeling. In this paper we propose a censored varying coefficient regression model using Buckley-James method to consider situations where the regression coefficients of the model are not constant but change as the smoothing variables change. By using the formulation of least squares support vector machine (LS-SVM), the coefficient estimators of the proposed model can be easily obtained from simple linear equations. Furthermore, a generalized cross validation function can be easily derived. In this paper, we evaluated the proposed method and demonstrated the adequacy through simulate data sets and real data sets.

Generalized Bayes estimation for a SAR model with linear restrictions binding the coefficients

  • Chaturvedi, Anoop;Mishra, Sandeep
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • The Spatial Autoregressive (SAR) models have drawn considerable attention in recent econometrics literature because of their capability to model the spatial spill overs in a feasible way. While considering the Bayesian analysis of these models, one may face the problem of lack of robustness with respect to underlying prior assumptions. The generalized Bayes estimators provide a viable alternative to incorporate prior belief and are more robust with respect to underlying prior assumptions. The present paper considers the SAR model with a set of linear restrictions binding the regression coefficients and derives restricted generalized Bayes estimator for the coefficients vector. The minimaxity of the restricted generalized Bayes estimator has been established. Using a simulation study, it has been demonstrated that the estimator dominates the restricted least squares as well as restricted Stein rule estimators.

Geographically weighted least squares-support vector machine

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.227-235
    • /
    • 2017
  • When the spatial information of each location is given specifically as coordinates it is popular to use the geographically weighted regression to incorporate the spatial information by assuming that the regression parameters vary spatially across locations. In this paper, we relax the linearity assumption of geographically weighted regression and propose a geographically weighted least squares-support vector machine for estimating geographically weighted mean by using the basic concept of kernel machines. Generalized cross validation function is induced for the model selection. Numerical studies with real datasets have been conducted to compare the performance of proposed method with other methods for predicting geographically weighted mean.