• Title/Summary/Keyword: Generalized mesh

Search Result 35, Processing Time 0.033 seconds

Recent developments in the GENESIS code based on the Legendre polynomial expansion of angular flux method

  • Yamamoto, Akio;Giho, Akinori;Endo, Tomohiro
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1143-1156
    • /
    • 2017
  • This paper describes recent development activities of the GENESIS code, which is a transport code for heterogeneous three-dimensional geometry, focusing on applications to reactor core analysis. For the treatment of anisotropic scattering, the concept of the simplified Pn method is introduced in order to reduce storage of flux moments. The accuracy of the present method is verified through a benchmark problem. Next, the iteration stability of the GENESIS code for the highly voided condition, which would appear in a severe accident (e.g., design extension) conditions, is discussed. The efficiencies of the coarse mesh finite difference and generalized coarse mesh rebalance acceleration methods are verified with various stabilization techniques. Use of the effective diffusion coefficient and the artificial grid diffusion coefficients are found to be effective to stabilize the acceleration calculation in highly voided conditions.

A k-Tree-Based Resource (CU/PE) Allocation for Reconfigurable MSIMD/MIMD Multi-Dimensional Mesh-Connected Architectures

  • Srisawat, Jeeraporn;Surakampontorn, Wanlop;Atexandridis, Kikitas A.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.58-61
    • /
    • 2002
  • In this paper, we present a new generalized k-Tree-based (CU/PE) allocation model to perform dynamic resource (CU/PE) allocation/deallocation decision for the reconfigurable MSIMD/MIMD multi-dimensional (k-D) mesh-connected architectures. Those reconfigurable multi-SIMD/MIMD systems allow dynamic modes of executing tasks, which are SIMD and MIMD. The MIMD task requires only the free sub-system; however the SIMD task needs not only the free sub-system but also the corresponding free CU. In our new k-Tree-based (CU/PE) allocation model, we introduce two best-fit heuristics for the CU allocation decision: 1) the CU depth first search (CU-DFS) in O(kN$_{f}$ ) time and 2) the CU adjacent search (CU-AS) in O(k2$^{k}$ ) time. By the simulation study, the system performance of these two CU allocation strategies was also investigated. Our simulation results showed that the CU-AS and CU-DFS strategies performed the same system performance when applied for the reconfigurable MSIMD/MIMD 2-D and 3-D mesh-connected architectures.

  • PDF

Computation of Stress Intensity Factors using Generalized Finite Element Method (일반유한유소법을 이용한 응력확대계수 계산)

  • Hong, Won-Tak;Lee, Phill-Seung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.52-55
    • /
    • 2010
  • 본 논문에서는 일반유한요소법(Generalized Finite Element Method)를 이용하여 응력확대계수를 계산하는 방법을 소개한다. 기존의 유한요소법을 사용하여 응력확대계수를 계산하기위해서는 J-integral 방법 등을 이용한 후처리 과정이 필수적으로 요구된다. 뿐만 아니라 균열선단 근방에서의 응력을 기술하기 위해서는 세밀한 요소망(mesh)이 요구된다. 후처리 과정과 균열선단 근방에서의 요소망은 수치적 오류를 발생시키고 이는 정확한 응력확대계수를 얻는데 어려움을 준다. 일반유한요소법은 근사함수를 요소망의 영향 없이 추가해서 사용할 수 있는 장점을 가지고 있지만, 활용성 측면에서 기존의 유한요소법보다 복잡하여 실용성이 떨어진다. 본 논문에서는 일반유한요소법의 장점을 충분히 살려 균열선단근방에서는 응력을 모델링하여 근사함수로 사용하고 균열선단에서 거리가 먼 곳은 기존의 유한요소를 써서 계산을 하였다. 특별한 후처리 과정(Post processing) 없이 비교적 정확한 응력확대계수를 손쉽게 얻을 수 있다. 일반유한요소법을 이용한 제시된 방법론이 타당함을 수치 예제를 통하여 확인하였다.

  • PDF

Investigation of allowable time-step sizes for generalized finite element analysis of the transient heat equation

  • O'Hara, P.;Duarte, C.A.;Eason, T.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.3
    • /
    • pp.235-255
    • /
    • 2010
  • This paper investigates the heat equation for domains subjected to an internal source with a sharp spatial gradient. The solution is first approximated using linear finite elements, and sufficiently small time-step sizes to yield stable simulations. The main area of interest is then in the ability to approximate the solution using Generalized Finite Elements, and again explore the time-step limitations required for stable simulations. Both high order elements, as well as elements with special enrichments are used to generate solutions. When compared to linear finite elements, the high order elements deliver better accuracy at a given level of mesh refinement, but do not offer an increase in critical time-step size. When special enrichment functions are used, the solution can be approximated accurately on very coarse meshes, while yielding solutions which are both accurate and computationally efficient. The major conclusion of interest is that the significantly larger element size yields larger allowable time-step sizes while still maintaining stability of the time-stepping algorithm.

A Probabilistic Load Balancing Scheme for Improving Service Quality of a Wireless Mesh Network (무선 메쉬 망의 서비스 품질 향상을 위한 확률적 부하 분담 기법)

  • Park, Jae-Sung;Lim, Yu-Jin;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.375-382
    • /
    • 2008
  • As the use of Internet and information communication technology is being generalized, the SSL protocol is essential in Internet because the important data should be transferred securely. While the SSL protocol is designed to defend from active attack such as message forgery and message alteration, the cipher suite setting can be easily modified. If the attacker draw on a malfunction of the client system and modify the cipher suite setting to the symmetric key algorithm which has short key length, he should eavesdrop and cryptanalysis the encrypt data. In this paper, we examine the domestic web site whether they generate the security session in the symmetric key algorithm which has short key length and propose the solution of the cipher suite setting problem.

Path-finding by using generalized visibility graphs in computer game environments (컴퓨터 게임 환경에서 일반화 가시성 그래프를 이용한 경로찾기)

  • Yu, Kyeon-Ah;Jeon, Hyun-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.21-31
    • /
    • 2005
  • In state-of-the-art games, characters can move in a goal-directed manner so that they can move to the goal position without colliding obstacles. Many path-finding methods have been proposed and implemented for these characters and most of them use the A* search algorithm. When .the map is represented with a regular grid of squares or a navigation mesh, it often takes a long time for the A* to search the state space because the number of cells used In the grid or the mesh increases for higher resolution. Moreover the A* search on the grid often causes a zigzag effect, which is not optimal and realistic. In this paper we propose to use visibility graphs to improve the search time by reducing the search space and to find the optimal path. We also propose a method of taking into account the size of moving characters in the phase of planning to prevent them from colliding with obstacles as they move. Simulation results show that the proposed method performs better than the grid-based A* algorithm in terms of the search time and space and that the resulting paths are more realistic.

  • PDF

A variational nodal formulation for multi-dimensional unstructured neutron diffusion problems

  • Qizheng Sun ;Wei Xiao;Xiangyue Li ;Han Yin;Tengfei Zhang ;Xiaojing Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2172-2194
    • /
    • 2023
  • A variational nodal method (VNM) with unstructured-mesh is presented for solving steady-state and dynamic neutron diffusion equations. Orthogonal polynomials are employed for spatial discretization, and the stiffness confinement method (SCM) is implemented for temporal discretization. Coordinate transformation relations are derived to map unstructured triangular nodes to a standard node. Methods for constructing triangular prism space trial functions and identifying unique nodes are elaborated. Additionally, the partitioned matrix (PM) and generalized partitioned matrix (GPM) methods are proposed to accelerate the within-group and power iterations. Neutron diffusion problems with different fuel assembly geometries validate the method. With less than 5 pcm eigenvalue (keff) error and 1% relative power error, the accuracy is comparable to reference methods. In addition, a test case based on the kilowatt heat pipe reactor, KRUSTY, is created, simulated, and evaluated to illustrate the method's precision and geometrical flexibility. The Dodds problem with a step transient perturbation proves that the SCM allows for sufficiently accurate power predictions even with a large time-step of approximately 0.1 s. In addition, combining the PM and GPM results in a speedup ratio of 2-3.

An experimental study on the application of escape device in a net pot for protecting of small giant octopus (Octopus dofleini) (어린 대문어(Octopus dofleini) 보호를 위한 통발의 탈출장치 적용에 대한 실험적 고찰)

  • KIM, Seonghun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.193-198
    • /
    • 2022
  • In this study, for the purpose of reducing the catch of small giant octopus in a net pot, an escape experiment of octopus was performed on five types of escape rings of different sizes. As a result of the experiment, the smallest giant octopus with a weight of 406 g was found to escape from an escape ring with a diameter of 30 mm or larger, and 592 g octopus, a weight similar to the octopus of the current minimum landing weight (600 g), escaped from an escape ring with a diameter of larger than 40 mm. An individual weight with 406 g becomes 39 mm when converted from a diameter of 25 mm circular escape vent; that is, the circumference to the inner diameter of the mesh. It can be inferred that the converted mesh size of 39 mm cannot escape. Logistic regression analysis was performed using a generalized linear model (GLM) to investigate the correlation between the ratio of escape ring size/Mantle diameter (R/MD) and the escape rate. As a result, it was found that there was a significant correlation between the R/MD ratio and the escape rate and that the higher the R/MD ratio, the greater the escape rate. As a result of logistic regression analysis, the R/MD value was denoted 0.520 with the 50% escape rate. In addition, it can be estimated to be about 50 mm when converted to the mesh size. Therefore, in this study, the diameter of the escape ring and the size of the escape possible of the octopus were experimentally considered. It was found that there was a significant correlation.

Remote Communication based on 3D Whiteboard (3차원 화이트보드에 기반한 원격 통신)

  • Lee, Jin-Suk;Choe, Chong-Youn
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1019-1024
    • /
    • 2006
  • 각종 온라인 문화가 발달하는 가운데 원거리에서 의사 소통을 가능하게 하는 도구에 관한 관심도 커지게 되었다. 이러한 도구 중에서 2 차원 그림 저작을 지원하는 도구에 기인하여, 본 논문에서는 3 차원 모델을 만들어 내고 조작함으로써 원거리의 사용자와 의사 소통할 수 있는 시스템을 제안한다. 실시간에 수행되는 시스템의 특성상, 3 차원 모델링은 간편하고 직관적으로 수행될 수 있도록 하며, 병행 수행 제어를 고려하여 구현한다. 본 시스템에서의 모델링은 주어진 primitive를 이용하거나 사전에 제작된 mesh를 불러오는 것으로 수행할 수 있으며, 사용자가 직접 그려주는 간략한 외곽선 스케치를 기반으로 하여 3 차원 모델을 생성할 수도 있다. 본 시스템에서 모델의 생성, 제어 등의 모든 연산은 다양한 병행 수행 제어 전략을 이용하여 실시간에 수행된다.

  • PDF

The Analysis of H-Shape Rolling by the Finite Element Method (유한요소법에 의한 H형강 압연공정의 해석)

  • 신현우;김낙수;박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1095-1105
    • /
    • 1993
  • Shape rolling processes to produce H-section beams are numerically simulated by the simplified three-dimensional finite element method. The 2-dimensional finite element method, used for the generalized plane strain condition, is combined with the slab method. Computer simulation results of the 19-passes in H-section beam rolling in practice include the grid distortions, the cross-sectional area changes, the roll separating forces, and the roll torques. Also, the amount of side spread can be found during the multi-pass rolling simulations. The finite element mesh system is remeshed with I-DEAS whenever the billet distorts severely. This study would contribute to CAD/CAM of shape rolling process through the optimal roll pass schedule.