• Title/Summary/Keyword: Generalized mesh

Search Result 35, Processing Time 0.025 seconds

Development of Advanced Numerical techniques to Reduce Grid Dependency in Industrial CFD Applications

  • Blahowsky Hans Peter
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.19-22
    • /
    • 1998
  • Automatic mesh generation procedures applied to industrial now problems lead to complex mesh topologies where usually no special considerations to mesh resolution are taken. In the present study a fast and flexible solution algorithm in combination with generalized higher order discretization schemes is presented and its application to intake port calculation is demonstrated.

  • PDF

Metascreen Analysis Using Generalized Sheet Transition Conditions(GSTCs) and Babinet's Principle (Babinet의 원리와 Generalized Sheet Transition Conditions(GSTCs)를 이용한 메타스크린 해석)

  • Lee, Sun-Gyu;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.685-692
    • /
    • 2018
  • Using Babinet's principle and generalized sheet transition conditions(GSTCs), an analysis method for metascreens is proposed. First, the relation of a complementary screen between a metafilm and metascreen with the same dimensions was confirmed using Babinet's principle. These properties were verified by comparing the reflection coefficient of the patch and the transmission coefficient of the mesh. The patch and mesh are the basic structures of metafilms and metascreens, respectively. Based on these findings, it is also confirmed that the reflection coefficient of the patch surface calculated by GSTCs has the same value as the transmission coefficient of the mesh surface. It is expected that the proposed analysis methods can be applied to the magnitude, phase, and polarization of electromagnetic waves in the various unit structures of a given metasurface.

Stochastic analysis of elastic wave and second sound propagation in media with Gaussian uncertainty in mechanical properties using a stochastic hybrid mesh-free method

  • Hosseini, Seyed Mahmoud;Shahabian, Farzad
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.41-64
    • /
    • 2014
  • The main objective of this article is the exploitation of a stochastic hybrid mesh-free method based on stochastic generalized finite difference (SGFD), Newmark finite difference (NFD) methods and Monte Carlo simulation for thermoelastic wave propagation and coupled thermoelasticity analysis based on GN theory (without energy dissipation). A thick hollow cylinder with Gaussian uncertainty in mechanical properties is considered as an analyzed domain for the problem. The effects of uncertainty in mechanical properties with various coefficients of variations on thermo-elastic wave propagation are studied in details. Also, the time histories and distribution on thickness of cylinder of maximum, mean and variance values of temperature and radial displacement are studied for various coefficients of variations (COVs).

Indoor Link Quality Comparison of IEEE 802.11a Channels in a Multi-radio Mesh Network Testbed

  • Bandaranayake, Asitha U;Pandit, Vaibhav;Agrawal, Dharma P.
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.1-20
    • /
    • 2012
  • The most important criterion for achieving the maximum performance in a wireless mesh network (WMN) is to limit the interference within the network. For this purpose, especially in a multi-radio network, the best option is to use non-overlapping channels among different radios within the same interference range. Previous works that have considered non-overlapping channels in IEEE 802.11a as the basis for performance optimization, have considered the link quality across all channels to be uniform. In this paper, we present a measurement-based study of link quality across all channels in an IEEE 802.11a-based indoor WMN test bed. Our results show that the generalized assumption of uniform performance across all channels does not hold good in practice for an indoor environment and signal quality depends on the geometry around the mesh routers.

Toolpath Generation for Three-axis Round-end Milling of Triangular Mesh Surfaces (삼각망 곡면의 3축 라운드엔드밀 가공을 위한 공구경로 생성)

  • Chung, Yun-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • Presented in this paper is a method to generate round-endmill toolpaths for sculptured surfaces represented as a triangular mesh model. The proposed method is applicable in toolpath generation for ball-endmills and flat-endmills because the round-endmill is a generalized tool in three-axis NC (numerical control) milling. The method uses a wireframe model as the offset model that represents a cutter location surface. Since wireframe models are relatively simple and fast to calculate, the proposed method can process large models and keep high precision. Intersection points with the wireframe offset model and a tool guide plane are calculated, and intersection curves are constructed by tracing the intersection points. The final step of the method is extracting regular curves from the intersection curves including degenerate and self-intersected segments. The proposed method is implemented and tested, and a practical example is presented.

Channel Assignment, Link Scheduling, Routing, and Rate Control for Multi-Channel Wireless Mesh Networks with Directional Antennas

  • Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.884-891
    • /
    • 2016
  • The wireless mesh network (WMN) has attracted significant interests as a broadband wireless network to provide ubiquitous wireless access for broadband services. Especially with incorporating multiple orthogonal channels and multiple directional antennas into the WMN, each node can communicate with its neighbor nodes simultaneously without interference between them. However, as we allow more freedom, we need a more sophisticated algorithm to fully utilize it and developing such an algorithm is not easy in general. In this paper, we study a joint channel assignment, link scheduling, routing, and rate control problem for the WMN with multiple orthogonal channels and multiple directional antennas. This problem is inherently hard to solve, since the problem is formulated as a mixed integer nonlinear problem (MINLP). However, despite of its inherent difficulty, we develop an algorithm to solve the problem by using the generalized Benders decomposition approach [2]. The simulation results show the proposed algorithm provides the optimal solution to maximize the network utility, which is defined as the sum of utilities of all sessions.

A PARALLEL FINITE ELEMENT ALGORITHM FOR SIMULATION OF THE GENERALIZED STOKES PROBLEM

  • Shang, Yueqiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.853-874
    • /
    • 2016
  • Based on a particular overlapping domain decomposition technique, a parallel finite element discretization algorithm for the generalized Stokes equations is proposed and investigated. In this algorithm, each processor computes a local approximate solution in its own subdomain by solving a global problem on a mesh that is fine around its own subdomain and coarse elsewhere, and hence avoids communication with other processors in the process of computations. This algorithm has low communication complexity. It only requires the application of an existing sequential solver on the global meshes associated with each subdomain, and hence can reuse existing sequential software. Numerical results are given to demonstrate the effectiveness of the parallel algorithm.

Specialized VLSI System Design for the Generalized Hough Transform (일반화된 Hough 변환을 위한 특수 목적 VLSI 시스템 설계에 관한 연구)

  • 채옥삼;이정헌
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.66-76
    • /
    • 1995
  • In this research, a mesh connected VLSI structure is proposed for the real time computation of the generalized Hough transform(GHT). The purpose of the research is to design a generalized Hough transformer that can be realized as a single chip processor. The GHT has been modified to yield a highly parallel structure consisting of simple processing elements(PEs) and communication networks. In the proposed structure, the GHT can be computed by first assigning an image pixel to a PE and performing shift and add operations. The result of the CAD circuit simulation shows that it can be computed in the time proportional to the number of pixels in the pattern. In addition to the Hough transformer, the peak detector has been designed to reduce 1)the number of the I/O operations between the transformer and the host computer and 2) the host computer's burden for peak detection by transmitting only the local peaks detected from the transformed accumulator. It is expected that the proposed single chip Hough transformer with peak detector makes a fast and inexpensive edge based object recognition systems possible for many industrial and military applications.

  • PDF

Dynamic Characteristics of a Turbo-chiller Rotor-Bearing System having a Lateral-Torsional Coupling by Gear Mesh Effect (기어 물림 효과에 의한 횡-비틀림 연성을 갖는 터보-냉동기 로터-베어링 시스템의 동특성)

  • Lee, An-Sung;Ha, Jin-Woong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1034-1039
    • /
    • 2000
  • In turbo-machines operated at high speeds through gear speed increasers a precise coupled analysis of lateral and torsional vibrations is required to achieve highly reliable designs with low vibration and low noise levels, where the vibration coupling is due to the gear pair mesh stiffness. In this paper, applying the generalized coupled lateral-torsional finite element model of a gear pair element, has been analyzed a coupled lateral-torsional vibration of the prototype 800 RT turbo-chiller rotor-bearing system with a bull-pinion gear speed increaser. Results have shown that the coupled torsional natural frequencies have decreased due to the coupling effect of lateral vibration and particularly, the 2nd torsional natural frequency and its mode shape have had big changes. However, changes of lateral vibration characteristics have been noticed only at high lateral whirl natural frequencies above 15,000 rpm.

  • PDF

A hybrid approach for character modeling using geometric primitives and shape-from-shading algorithm

  • Kazmin, Ismail Khalid;You, Lihua;Zhang, Jian Jun
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.121-131
    • /
    • 2016
  • Organic modeling of 3D characters is a challenging task when it comes to correctly modeling the anatomy of the human body. Most sketch based modeling tools available today for modeling organic models (humans, animals, creatures etc) are focused towards modeling base mesh models only and provide little or no support to add details to the base mesh. We propose a hybrid approach which combines geometrical primitives such as generalized cylinders and cube with Shape-from-Shading (SFS) algorithms to create plausible human character models from sketches. The results show that an artist can quickly create detailed character models from sketches by using this hybrid approach.