• 제목/요약/키워드: Generalized harmonic grid voltage

검색결과 11건 처리시간 0.02초

Coordinated Control of DFIG System based on Repetitive Control Strategy under Generalized Harmonic Grid Voltages

  • Nian, Heng;Cheng, Chenwen;Song, Yipeng
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.733-743
    • /
    • 2017
  • This paper develops a coordinated control strategy of the doubly fed induction generator (DFIG) system based on repetitive control (RC) under generalized harmonic grid voltage conditions. The proposed RC strategy in the rotor side converter (RSC) is capable of ensuring smooth DFIG electromagnetic torque that will enable the possible safe functioning of the mechanical components, such as gear box and bearing. Moreover, the proposed RC strategy in the grid side converter (GSC) aims to achieve sinusoidal overall currents of the DFIG system injected into the network to guarantee satisfactory power quality. The dc-link voltage fluctuation under the proposed control target is theoretically analyzed. Influence of limited converter capacity on the controllable area has also been studied. A laboratory test platform has been constructed, and the experimental results validate the availability of the proposed RC strategy for the DFIG system under generalized harmonic grid voltage conditions.

Virtual Flux and Positive-Sequence Power Based Control of Grid-Interfaced Converters Against Unbalanced and Distorted Grid Conditions

  • Tao, Yukun;Tang, Wenhu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1265-1274
    • /
    • 2018
  • This paper proposes a virtual flux (VF) and positive-sequence power based control strategy to improve the performance of grid-interfaced three-phase voltage source converters against unbalanced and distorted grid conditions. By using a second-order generalized integrator (SOGI) based VF observer, the proposed strategy achieves an AC voltage sensorless and grid frequency adaptive control. Aiming to realize a balanced sinusoidal line current operation, the fundamental positive-sequence component based instantaneous power is utilized as the control variable. Moreover, the fundamental negative-sequence VF feedforward and the harmonic attenuation ability of a sequence component generator are employed to further enhance the unbalance regulation ability and the harmonic tolerance of line currents, respectively. Finally, the proposed scheme is completed by combining the foregoing two elements with a predictive direct power control (PDPC). In order to verify the feasibility and validity of the proposed SOGI-VFPDPC, the scenarios of unbalanced voltage dip, higher harmonic distortion and grid frequency deviation are investigated in simulation and experimental studies. The corresponding results demonstrate that the proposed strategy ensures a balanced sinusoidal line current operation with excellent steady-state and transient behaviors under general grid conditions.

Minimization of Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Unbalanced Grid Condition

  • Park, Yonggyun;Suh, Yongsug;Go, Yuran
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.273-274
    • /
    • 2012
  • This paper investigates control algorithms for a doubly fed induction generator(DFIG) with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power system under unbalanced grid conditions. Two different control algorithms to compensate for unbalanced conditions are proposed. Evaluation factors of control algorithm are fault ride-through(FRT) capability, efficiency, harmonic distortions and torque pulsation. Zero regulated negative sequence stator current control algorithm has the most effective performance concerning FRT capability and efficiency. Ripple-free control algorithm nullifies oscillation component of active power and reactive power. Ripple-free control algorithm shows the least harmonic distortions and torque pulsation. Combination of zero regulated negative sequence stator current and ripple-free control algorithm control algorithm depending on the operating requirements and depth of grid unbalance presents the most optimized performance factors under the generalized unbalanced operating conditions leading to high performance DFIG wind turbine system.

  • PDF

Single-Phase Inverter for Grid-Connected and Intentional Islanding Operations in Electric Utility Systems

  • Lidozzi, Alessandro;Lo Calzo, Giovanni;Solero, Luca;Crescimbini, Fabio
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.704-716
    • /
    • 2016
  • Small distributed generation units are usually connected to the main electric grid through single-phase voltage source inverters. Grid operating conditions such as voltage and frequency are not constant and can fluctuate within the range values established by international standards. Furthermore, the requirements in terms of power factor correction, total harmonic distortion, and reliability are getting tighter day by day. As a result, the implementation of reliable and efficient control algorithms, which are able to adjust their control parameters in response to changeable grid operating conditions, is essential. This paper investigates the configuration topology and control algorithm of a single-phase inverter with the purpose of achieving high performance in terms of efficiency as well as total harmonic distortion of the output current. Accordingly, a Second Order Generalized Integrator with a suitable Phase Locked Loop (SOGI-PLL) is the basis of the proposed current and voltage regulation. Some practical issues related to the control algorithm are addressed, and a solution for the control architecture is proposed, based on resonant controllers that are continuously tuned on the basis of the actual grid frequency. Further, intentional islanding operation is investigated and a possible procedure for switching from grid-tied to islanding operation and vice-versa is proposed.

First-order Generalized Integrator Based Frequency Locked Loop and Synchronization for Three-Phase Grid-connected Converters under Adverse Grid Conditions

  • Luo, Zhaoxu;Su, Mei;Sun, Yao;Liu, Zhangjie;Dong, Mi
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1939-1949
    • /
    • 2016
  • This paper presents an alternative frequency adaptive grid synchronization technique named HDN-FLL, which can accurately extract the fundamental positive- and negative-sequence components and interested harmonics in adverse three-phase grid voltage. The HDN-FLL is based on the harmonic decoupling network (HDN) consisting of multiple first order complex vector filters (FOCVF) with a frequency-locked loop (FLL), which makes the system frequency adaptive. The stability of the proposed FLL is strictly verified to be global asymptotically stable. In addition, the linearization and parameters tuning of the FLL is also discussed. The structure of the HDN has been widely used as a prefilter in grid synchronization techniques. However, the stability of the general HDN is seldom discussed. In this paper, the transfer function expression of the general HDN is deduced and its stability is verified by the root locus method. To show the advantages of the HDN-FLL, a simulation comparison with other gird synchronization methods is carried out. Experimental results verify the excellent performance of the proposed synchronization method.

Design of a High-performance High-pass Generalized Integrator Based Single-phase PLL

  • Kulkarni, Abhijit;John, Vinod
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1231-1243
    • /
    • 2017
  • Grid-interactive power converters are normally synchronized with the grid using phase-locked loops (PLLs). The performance of the PLLs is affected by the non-ideal conditions in the sensed grid voltage such as harmonics, frequency deviations and the dc offsets in single-phase systems. In this paper, a single-phase PLL is presented to mitigate the effects of these non-idealities. This PLL is based on the popular second order generalized integrator (SOGI) structure. The SOGI structure is modified to eliminate the effects of input dc offsets. The resulting SOGI structure has a high-pass filtering property. Hence, this PLL is termed as a high-pass generalized integrator based PLL (HGI-PLL). It has fixed parameters which reduces the implementation complexity and aids in the implementation in low-end digital controllers. The HGI-PLL is shown to have the lowest resource utilization among the SOGI based PLLs with dc cancelling capability. Systematic design methods are evolved leading to a design that limits the unit vector THD to within 1% for given non-ideal input conditions in terms of frequency deviation and harmonic distortion. The proposed designs achieve the fastest transient response. The performance of this PLL has been verified experimentally. The results agree with the theoretical prediction.

A Comparison of Control Algorithms for a Doubly Fed Induction Generator in Medium-voltage Wind Power System under Unbalanced Conditions

  • 고유란;박현철;주야충;서용석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.194-195
    • /
    • 2010
  • This paper investigates control algorithms for a doubly fed induction generator (DFIG) with back-to-back converter in medium-voltage wind power system under unbalanced grid conditions. Operation of DFIG under unbalanced grid conditions causes several problems such as overcurrent, unbalanced currents, active power pulsation and torque pulsation. Three different control algorithms to compensate for the unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, efficiency, harmonic distortions and torque pulsation. The control algorithm having zero amplitude of negative sequence current shows the most cost-effective performance concerning fault ride-through capability and efficiency. The control algorithm for nullifying the oscillating component of the instantaneous active power generates least harmonic distortions. Combination of these two control algorithms depending on the operating requirements presents most optimized performance factors under the generalized unbalanced operating conditions.

  • PDF

Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance

  • Han, Daesu;Park, Yonggyun;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.246-247
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power system under unbalanced grid conditions. Control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. Combination of these two control algorithms depending on the operating requirements and depth of grid unbalance presents most optimized performance factors under the generalized unbalanced operating conditions leading to high performance DFIG wind turbine system. The proposed control algorithms are verified through transient response in the simulation.

  • PDF

계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략 (Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance)

  • 한대수;서용석
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

Minimization of Active Power and Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power Systems under Unbalanced Grid Conditions

  • Park, Yonggyun;Han, Daesu;Suh, Yongsug;Choi, Wooyoung
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1032-1041
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power systems under unbalanced grid conditions. Three different control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions and torque pulsation. The control algorithm having a zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by the control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive powers. A combination of these two control algorithms depending on the operating requirements and the depth of the grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions leading to high performance DFIG wind turbine systems.