• Title/Summary/Keyword: Generalized extreme value distribution

Search Result 122, Processing Time 0.027 seconds

Estimation for scale parameter of type-I extreme value distribution

  • Choi, Byungjin
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.535-545
    • /
    • 2015
  • In a various range of applications including hydrology, the type-I extreme value distribution has been extensively used as a probabilistic model for analyzing extreme events. In this paper, we introduce methods for estimating the scale parameter of the type-I extreme value distribution. A simulation study is performed to compare the estimators in terms of mean-squared error and bias, and the obtained results are provided.

Prediction of Extreme Sloshing Pressure Using Different Statistical Models

  • Cetin, Ekin Ceyda;Lee, Jeoungkyu;Kim, Sangyeob;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.185-194
    • /
    • 2018
  • In this study, the extreme sloshing pressure was predicted using various statistical models: three-parameter Weibull distribution, generalized Pareto distribution, generalized extreme value distribution, and three-parameter log-logistic distribution. The estimation of sloshing impact pressure is important in design of liquid cargo tank in severe sea state. In order to get the extreme values of local impact pressures, a lot of model tests have been carried out and statistical analysis has been performed. Three-parameter Weibull distribution and generalized Pareto distribution are widely used as the statistical analysis method in sloshing phenomenon, but generalized extreme value distribution and three-parameter log-logistic distribution are added in this study. Additionally, statistical distributions are fitted to peak pressure data using three different parameter estimation methods. The data were obtained from a three-dimensional sloshing model text conducted at Seoul National University. The loading conditions were 20%, 50%, and 95% of tank height, and the analysis was performed based on the measured impact pressure on four significant panels with large sloshing impacts. These fittings were compared by observing probability of exceedance diagrams and probability plot correlation coefficient test for goodness-of-fit.

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

ON ASYMPTOTIC OF EXTREMES FROM GENERALIZED MAXWELL DISTRIBUTION

  • Huang, Jianwen;Wang, Jianjun
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.679-698
    • /
    • 2018
  • In this paper, with optimal normalized constants, the asymptotic expansions of the distribution and density of the normalized maxima from generalized Maxwell distribution are derived. For the distributional expansion, it shows that the convergence rate of the normalized maxima to the Gumbel extreme value distribution is proportional to 1/ log n. For the density expansion, on the one hand, the main result is applied to establish the convergence rate of the density of extreme to its limit. On the other hand, the main result is applied to obtain the asymptotic expansion of the moment of maximum.

Non-Gaussian analysis methods for planing craft motion

  • Somayajula, Abhilash;Falzarano, Jeffrey M.
    • Ocean Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.293-308
    • /
    • 2014
  • Unlike the traditional displacement type vessels, the high speed planing crafts are supported by the lift forces which are highly non-linear. This non-linear phenomenon causes their motions in an irregular seaway to be non-Gaussian. In general, it may not be possible to express the probability distribution of such processes by an analytical formula. Also the process might not be stationary or ergodic in which case the statistical behavior of the motion to be constantly changing with time. Therefore the extreme values of such a process can no longer be calculated using the analytical formulae applicable to Gaussian processes. Since closed form analytical solutions do not exist, recourse is taken to fitting a distribution to the data and estimating the statistical properties of the process from this fitted probability distribution. The peaks over threshold analysis and fitting of the Generalized Pareto Distribution are explored in this paper as an alternative to Weibull, Generalized Gamma and Rayleigh distributions in predicting the short term extreme value of a random process.

극단값 분포 추정을 위한 모수적 비모수적 방법 (Parametric nonparametric methods for estimating extreme value distribution)

  • 우승현;강기훈
    • 문화기술의 융합
    • /
    • 제8권1호
    • /
    • pp.531-536
    • /
    • 2022
  • 본 논문은 꼬리가 두꺼운 분포의 꼬리부분에 대한 분포를 추정할 경우 모수적 방법과 비모수적 방법의 성능에 대해 비교하였다. 모수적 방법으로는 일반화 극단값 분포와 일반화 파레토 분포를 이용하였고, 비모수적 방법은 커널형 확률밀도함수 추정방법을 적용하였다. 두 접근법의 비교를 위해 2014년부터 2018년까지 서울시 관측소별 일일 미세먼지 공공데이터를 이용하여 블록 최댓값 모형과 분계점 초과치 모형을 적용하여 함수 추정한 결과를 함께 보이고 2년, 5년, 10년의 재현수준을 통해 고농도의 미세먼지가 일어날 지역을 예측하였다.

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF GENERALIZED PARETO DISTRIBUTION BASED ON GENERALIZED ORDER STATISTICS AND CHARACTERIZATION

  • Kumar, Devendra
    • 충청수학회지
    • /
    • 제27권3호
    • /
    • pp.347-361
    • /
    • 2014
  • Generalized Pareto distribution play an important role in reliability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto or Lomax distribution. In this paper, we established exact expressions and recurrence relations satised by the quotient moments of generalized order statistics for a generalized Pareto distribution. Further the results for quotient moments of order statistics and records are deduced from the relations obtained and a theorem for characterizing this distribution is presented.

지진 재현수준 예측에 대한 로그-로지스틱 분포와 일반화 극단값 분포의 비교 (Comparison of log-logistic and generalized extreme value distributions for predicted return level of earthquake)

  • 고낙경;하일도;장대흥
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.107-114
    • /
    • 2020
  • 자연 재해로부터 관측되는 자료를 대상으로 재현 수준 예측 등과 같은 자료 분석을 위해 일반화 극단값 분포(generalized extreme value)가 자주 사용되어 왔다. 표본 수가 충분히 큰 경우 연속적인 블록 최댓값들은 점근적으로 일반화 극단값 분포를 따른다. 하지만 소표본인 경우 이러한 사실은 성립되지 않을 수도 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 모형 적합도 검정 및 모형 선택을 통해 로그-로지스틱(log-logistic) 분포의 사용을 제안한다. 하나의 예증으로서 중국 지진 자료를 대상으로 하여 로그-로지스틱 분포를 이용하여 재현 기간별 재현 수준 예측 및 신뢰구간을 제시한다.

ON RELATIONS FOR QUOTIENT MOMENTS OF THE GENERALIZED PARETO DISTRIBUTION BASED ON RECORD VALUES AND A CHARACTERIZATION

  • Kumar, Devendra
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.327-336
    • /
    • 2013
  • Generalized Pareto distributions play an important role in re-liability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto distribution, and Power distribution. In this paper we establish some recurrences relations satisfied by the quotient moments of the upper record values from the generalized Pareto distribution. Further a char-acterization of this distribution based on recurrence relations of quotient moments of record values is presented.