• Title/Summary/Keyword: Generalized Subspace Approach

Search Result 5, Processing Time 0.019 seconds

Signal Subspace-based Voice Activity Detection Using Generalized Gaussian Distribution (일반화된 가우시안 분포를 이용한 신호 준공간 기반의 음성검출기법)

  • Um, Yong-Sub;Chang, Joon-Hyuk;Kim, Dong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this paper we propose an improved voice activity detection (VAD) algorithm using statistical models in the signal subspace domain. A uncorrelated signal subspace is generated using embedded prewhitening technique and the statistical characteristics of the noisy speech and noise are investigated in this domain. According to the characteristics of the signals in the signal subspace, a new statistical VAD method using GGD (Generalized Gaussian Distribution) is proposed. Experimental results show that the proposed GGD-based approach outperforms the Gaussian-based signal subspace method at 0-15 dB SNR simulation conditions.

A Generalized Subspace Approach for Enhancing Speech Corrupted by Colored Noise Using Whitening Transformation (유색 잡음에 오염된 음성의 향상을 위한 백색 변환을 이용한 일반화 부공간 접근)

  • Lee, Jeong-Wook;Son, Kyung-Sik;Park, Jang-Sik;Kim, Hyun-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1665-1674
    • /
    • 2011
  • In this paper, we proposed an algorithm for speech enhancement of speeches corrupted by colored noise. When there is no correlation between colored noise and speech signal, the colored noise turns into white noise through whitening transformation. This transformed signal has been applied to the generalized subspace approach for speech enhancement. The speech spectral distortion, produced by the whitening transformation as pre-processing, has been restored by using the inverse whitening transformation as post-processing of the proposed algorithm. The performance of the proposed algorithm for speech enhancement has been confirmed by computer simulation. The colored noises used in this experiment were car noise and multi-talker babble. It is confirmed that the proposed algorithm shows better performance from SNR and SSD viewpoint over the previous approach with the data from the AURORA and TIMIT data base.

A Generalized Subspace Approach for Enhancing Speech Corrupted by Colored Noise Using Voice Activity Detector(VAD) (음성활동영역검색을 사용하는 유색잡음에 오염된 음성의 향상을 위한 일반화 부공간 접근)

  • Son, Kyung-Sik;Kim, Hyun-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1769-1776
    • /
    • 2013
  • In this paper, we proposed the modified YL(Yi and Loizou) algorithm, using a VAD(voice activity detector) for enhancing speech corrupted by colored noise. The performance of the proposed algorithm has been compared to the YL algorithm and LS(Lee and Son, etc.) algorithm by computer simulation. The colored noises used in the experiment were a car noise and multi-talker babble from the AURORA data base and the used voices from the TIMIT data base. It is confirmed that the proposed algorithm shows better performance from SNR(signal to noise ratio) and SSD(speech spectral distortion) viewpoint over the previous two approach.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

Generalized Partially Double-Index Model: Bootstrapping and Distinguishing Values

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.305-312
    • /
    • 2015
  • We extend a generalized partially linear single-index model and newly define a generalized partially double-index model (GPDIM). The philosophy of sufficient dimension reduction is adopted in GPDIM to estimate unknown coefficient vectors in the model. Subsequently, various combinations of popular sufficient dimension reduction methods are constructed with the best combination among many candidates determined through a bootstrapping procedure that measures distances between subspaces. Distinguishing values are newly defined to match the estimates to the corresponding population coefficient vectors. One of the strengths of the proposed model is that it can investigate the appropriateness of GPDIM over a single-index model. Various numerical studies confirm the proposed approach, and real data application are presented for illustration purposes.