• Title/Summary/Keyword: Generalized Pareto Distribution

Search Result 64, Processing Time 0.019 seconds

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF GENERALIZED PARETO DISTRIBUTION BASED ON GENERALIZED ORDER STATISTICS AND CHARACTERIZATION

  • Kumar, Devendra
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.347-361
    • /
    • 2014
  • Generalized Pareto distribution play an important role in reliability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto or Lomax distribution. In this paper, we established exact expressions and recurrence relations satised by the quotient moments of generalized order statistics for a generalized Pareto distribution. Further the results for quotient moments of order statistics and records are deduced from the relations obtained and a theorem for characterizing this distribution is presented.

ON RELATIONS FOR QUOTIENT MOMENTS OF THE GENERALIZED PARETO DISTRIBUTION BASED ON RECORD VALUES AND A CHARACTERIZATION

  • Kumar, Devendra
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.327-336
    • /
    • 2013
  • Generalized Pareto distributions play an important role in re-liability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto distribution, and Power distribution. In this paper we establish some recurrences relations satisfied by the quotient moments of the upper record values from the generalized Pareto distribution. Further a char-acterization of this distribution based on recurrence relations of quotient moments of record values is presented.

Noninformative priors for the scale parameter in the generalized Pareto distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1521-1529
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the scale parameter is of interest. We developed the rst order and the second order matching priors. We revealed that the second order matching prior does not exist. It turns out that the reference prior and Jeffrey's prior do not satisfy a first order matching criterion, and Jeffreys' prior, the reference prior and the matching prior are different. Some simulation study is performed and a real example is given.

The Likelihood for a Two-Dimensional Poisson Exceedance Point Process Model

  • Yun, Seok-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.793-798
    • /
    • 2008
  • Extreme value inference deals with fitting the generalized extreme value distribution model and the generalized Pareto distribution model, which are recently combined to give a single model, namely a two-dimensional non-homogeneous Poisson exceedance point process model. In this paper, we extend the two-dimensional non-homogeneous Poisson process model to include non-stationary effect or dependence on covariates and then derive the likelihood for the extended model.

Estimating exponentiated parameter and distribution of quotient and ratio in an exponentiated Pareto

  • Moon, Yeung-Gil;Lee, Chang-Soo;Kang, Jun-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.967-972
    • /
    • 2010
  • We shall consider estimations of an exponetiated parameter of the exponentiated Pareto distribution with known scale and threshold parameters. A quotient distribution of two independent exponentiated Pareto random variables is obtained. We also derive the distribution of the ratio of two independent exponentiated Pareto random variables.

Comparison Study of Parameter Estimation Methods for Some Extreme Value Distributions (Focused on the Regression Method) (극단치 분포의 모수 추정방법 비교 연구(회귀 분석법을 기준으로))

  • Woo, Ji-Yong;Kim, Myung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.463-477
    • /
    • 2009
  • Parameter estimation methods such as maximum likelihood estimation method, probability weighted moments method, regression method have been popularly applied to various extreme value models in numerous literature. Among three methods above, the performance of regression method has not been rigorously investigated yet. In this paper the regression method is compared with the other methods via Monte Carlo simulation studies for estimation of parameters of the Generalized Extreme Value(GEV) distribution and the Generalized Pareto(GP) distribution. Our simulation results indicate that the regression method tends to outperform other methods under small samples by providing smaller biases and root mean square errors for estimation of location parameter of the GEV model. For the scale parameter estimation of the GP model under small samples, the regression method tends to report smaller biases than the other methods. The regression method tends to be superior to other methods for the shape parameter estimation of the GEV model and GP model when the shape parameter is -0.4 under small and moderately large samples.

A Bayesian Analysis of Return Level for Extreme Precipitation in Korea (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Lee, Jeong Jin;Kim, Nam Hee;Kwon, Hye Ji;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.947-958
    • /
    • 2014
  • Understanding extreme precipitation events is very important for flood planning purposes. Especially, the r-year return level is a common measure of extreme events. In this paper, we present a spatial analysis of precipitation return level using hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitations and daily precipitation above a high threshold at 62 stations in Korea with generalized extreme value(GEV) and generalized Pareto distribution(GPD), respectively. The spatial dependence among return levels is incorporated to the model through a latent Gaussian process of the GEV and GPD model parameters. We apply the proposed model to precipitation data collected at 62 stations in Korea from 1973 to 2011.

An Alternative Study of the Determination of the Threshold for the Generalized Pareto Distribution (일반화 파레토 분포에서 임계치 결정에 대한 대안적 연구)

  • Yoon, Jeong-Yoen;Cho, Jae-Beom;Jun, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.931-939
    • /
    • 2011
  • In practice, thresholds are determined by the two subjective assessment methods in a generalized pareto distribution of mean extreme function(MEF-graph) or Hill-graph. To remedy the problem of subjectiveness of these methods, we propose an alternative method to determine the threshold based on the robust statistics. We compared the MEF-graph, Hill-graph and our method through VaRs on the Korean stock market data from January 5, 1987 to August 3, 2009. As a result, the VaR based on the proposed method is not much different from the existing methods, and the standard deviation of VaR for our method was the smallest. The results show that our method can be a promising alternative to determine thresholds of the generalized pareto distributions.

Noninformative priors for the shape parameter in the generalized Pareto distribution

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.171-178
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the parameter of interest is the shape parameter. We developed the first order and the second order matching priors.We revealed that the second order matching prior does not exist. It turns out that the reference prior satisfies a first order matching criterion, but Jeffrey's prior is not a first order matching prior. Some simulation study is performed and a real example is given.