• Title/Summary/Keyword: Generalized Laminated Composite Beam Element

Search Result 2, Processing Time 0.016 seconds

Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams

  • Lal, Achchhe;Markad, Kanif
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.501-514
    • /
    • 2018
  • The paper presents the thermo-mechanically induced non-linear response of multiwall carbon nanotube reinforced laminated composite beam (MWCNTRCB) supported by elastic foundation using higher order shear deformation theory and von-Karman non-linear kinematics. The elastic properties of MWCNT reinforced composites are evaluated using Halpin-Tsai model by considering MWCNT reinforced polymer matrix as new matrix by dispersing in it and then reinforced with E-glass fiber in an orthotropic manner. The laminated beam is supported by Pasternak elastic foundation with Winkler cubic nonlinearity. A generalized static analysis is formulated using finite element method (FEM) through principle of minimum potential energy approach.

Flexural and Buckling Analysis of Laminated Composite Beams with Bi- and Mono-Symmetric Cross-Sections (이축 및 일축 대칭단면 적층복합 보의 휨과 좌굴해석)

  • Hwoang, Jin-Woo;Back, Sung Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.614-621
    • /
    • 2019
  • A generalized laminated composite beam element is presented for the flexural and buckling analysis of laminated composite beams with double and single symmetric cross-sections. Based on shear-deformable beam theory, the present beam model accounts for transverse shear and warping deformations, as well as all coupling terms caused by material anisotropy. The plane stress and plane strain assumptions were used along with the cross-sectional stiffness coefficients obtained from the analytical technique for different cross-sections. Two types of one-dimensional beam elements with seven degrees-of-freedom per node, including warping deformation, i.e., three-node and four-node elements, are proposed to predict the flexural behavior of symmetric or anti-symmetric laminated beams. To alleviate the shear-locking problem, a reduced integration scheme was employed in this study. The buckling load of laminated composite beams under axial compression was then calculated using the derived geometric block stiffness. To demonstrate the accuracy and efficiency of the proposed beam elements, the results based on three-node beam element were compared with those of other researchers and ABAQUS finite elements. The effects of coupling and shear deformation, support conditions, load forms, span-to-height ratio, lamination architecture on the flexural response, and buckling load of composite beams were investigated. The convergence of two different beam elements was also performed.