본 연구에서는 앞의 여러 연구자들이 시도한 3차원 연쇄기구의 운동해석법을 비교 검토하고, 이중 기호방정식을 이용하여 3차원 연쇄기구의 운동해석을 일반화 하고져 한다. 또 품질향상, 대량생산(mass production) 및 생산가 절하를 위해 만족시키기 위해, 기본해석모델인2차원 연쇄기구에서 3차원연쇄기구로 정밀화 하면서, 가능한 모든 3차원 연쇄기구의 복잡화 되고 있는 현대 기계의 운동요구를 만족시키기 위해, 기본해석모델인 2차원 연쇄기구에서 3차원연쇄기구로 정밀화 하면서, 가능한 모든 3차원 연쇄기구의 운동을 해석 하기 위한 일반해석법을 개발하므로써 해석을 일반화 시키고, 그것을 컴퓨터로 시뮬레이션하여 운동해석을 신빙성있고 신속하게 수행토록 하며, 컴퓨터 결과를 실제모형 즉 구면 4-R 연쇄기구, R-S-S-R 기구 및 3C-R 기구등을 제작하여,실제결과와 비교 검토하므로써 개발된 일반운동해석법의 타당성을 실험적으로 입증 비교 검토하므로써 일반운동해석법의 타당성을 실험적으로 입증하려 한다.
A general procedure for determining the optimum location of suspension hard points with respect to kinematic design parametes is presented. Suspensions are modeled as connection of rigid bodies by ideal kinematic joints. Constraint equations of the kinematic joints are expressed in terms of the generalized coordinates and hard points. By directly differentiating the constraint equations with respect to the hard points, kinematic sencitivity equations are obtained. In order to cope with algebraic complexity associated with the differentiation process, a symbolic computation technique is used. A performance index is defined in terms of static design parameters such as camber, caster, toe, ect.. Gradient of the performance index can be analytically computed from the kinematic sensitivity equations. Optimization results show the effectiveness and validity of the procedure, which is applicable to any type of suspension if its kinematic configurations are given.
This paper develops a sequential updating method of the Euler parameter generalized coordinates for the machine kinematics and dynamics, The Newton's method is slightly modified so as to utilize the Jacobian matrix with respect to the virtual rotation instead of this with repect to the Euler parameters. An intermediate variable is introduced and the modified Newton's method solves for the variable first. Relational equation of the intermediate variable is then solved for the Euler parameters. The solution process is carried out efficiently by symoblic inversion of the relational equation of the intermediate variable and the iteration equation of the Euler parameter normalization constraint. The proposed method is applied to a kinematic and dynamic analysis with the Generalized Coordinate Partitioning method. Covergence analysis is performed to guarantee the local convergence of the proposed method. To demonstrate the validity and practicalism of the proposed method, kinematic analysis of a motion base system and dynamic analysis of a vehicle are carried out.
In this study, singularity of two types of mobile robots for various input joints are investigated: One is the mobile robot with three caster wheels and the other is the mobile robot with two conventional wheels and one caster wheel. Kinematic models are derived via the transfer method of generalized coordinates. Then, determinants of the Jacobian of the mobile robots are used to identify the singularity configurations.
This paper presents a systematic method for the dynamic analysis of flexible mechanical systems containing closed kinematic loops. Kinematics between pairs of contiguous flexible bodies is described with the joint coordinates and the deformation modal coordinates. The cut-joint constraint equations associated with the closed kinematic loops are derived, simply using the geometric conditions. The equations of motions are initially written in terms of the joint and modal coordinates using the velocity transformation technique. Lagrange multipliers associated with the cut-joint constraints for closed-loop systems are then eliminated systematically using the generalized coordinate partitioning method, resulting to a minimal set of equations of motion.
Chained form mobile robots have been studied from the viewpoint of the control and analysis of nonholonomic mechanical systems in literature. However, researches for the detailed closed form kinematic modeling are rarely progressed. Nothing that a chained form mobile robot can be considered as a parallel system including several chains and wheels, the transfer method using augmented generalized coordinates is applied to obtain inverse and forward kinematic models of chained form mobile robots. Various numerical simulations are conducted to verify the effectiveness of the suggested kinematic model.
Basic constraint equations derived from orthogonality conditions between a pair of body-fixed vectors and a body-fixed vector or a vector between two bodies are reformulated by using relative coordinate kinematics between two adjacent reference frames. Arithmetic numbers of operations required to compute derivatives of the constraint equations are drastically reduced. A mixed formulation of relative and cartesian coordinates is developed to further simplify derivatives of the constraints. Advantages and disadvantages of the new formulation are discussed. Possible singularity problem of para llelism constraints is resolved by introducing an extra generalized coordinate. Kinematic analysis of a McPherson strut suspension system are carried out to illustrate use and efficiency of the new formulation.
This paper presents an algorithm which seeks steady-state equilibrium positions of constrained multibody systems driven by constant generalized speeds. Since the relative coordinates are employed, the constraint equations at cut joints are incorporated into the formulation. The proposed algorithm leads to nonlinear equations that need to be solved iteratively. This algorithm should satisfy both types of conditions: the force equilibrium equations and the kinematic constraint equations. To verify the effectiveness of the proposed algorithm, two numerical examples are solved and the results are compared with those of a commercial program. This method, compared to the conventional method of using dynamic analysis, has the advantage of computational efficiency and stability.
This paper presents the method to eliminate the constraint reaction in the Lagrange multiplier form equation of motion by using a generalized coordinate driveder from the velocity constraint equation. This method introduces a matrix method by considering the m dimensional space spanned by the rows of the constraint jacobian matrix. The orthogonal vectors defining the constraint manifold are projected to null vectors by the tangential vectors defined on the constraint manifold. Therefore the orthogonal projection matrix is defined by the tangential vectors. For correcting the generalized position coordinate, the optimization problem is formulated. And this correction process is analyzed by the quasi Newton method. Finally this method is verified through 3 dimensional vehicle model.
기계시스템을 제어한다든지 그 부재를 설계하기 위하여 그리고 구동기의 용량을 결정하는데 있어서 구동력이나 조인트반력을 해석하는 것이 필요하다. 본 논문은 주어진 시스템의 운동을 구현하는 다양한 형태의 구동조건에 따른 구동력(또는 토크)을 조인트좌표 공간에서 계산하는 알고리즘을 제시한다. 조인트좌표를 기구학적 시스템의 일반좌표로 사용하며 운동방정식과 구속조건의 가속도식은 속도변환법을 이용하여 직교좌표공간으로부터 조인트좌표공간으로 변환한다. 수치예제를 통하여 제시된 알고리즘의 유용성을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.