• 제목/요약/키워드: Generalized Feistel Network

검색결과 9건 처리시간 0.03초

일반화된 Feistel 구조와 Nyberg의 가설

  • 지성택;박춘식;임종인;성수학
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 1998년도 종합학술발표회논문집
    • /
    • pp.335-343
    • /
    • 1998
  • Nyberg는 Asiacrypt'96에서 한 라운드에 여러 개의 S-box가 작용하는 일반화된 Feistel 구조를 제안하였으나, 안전성에 대해서는 정확한 증명없이 추측만을 제시하였다. 본 논문에서는 한 라운드에 2개의 S-box가 작용하는 일반화된 Feistel 구조의 안전성을 증명한다. 또 Nyberg의 추측이 틀리다는 것도 증명한다.

  • PDF

블록암호 CLEFIA-128의 효율적인 하드웨어 구현 (An Efficient Hardware Implementation of Block Cipher CLEFIA-128)

  • 배기철;신경욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.404-406
    • /
    • 2015
  • 128-비트 마스터키를 지원하는 블록암호 CLEFIA-128의 저면적 하드웨어 구현에 대해 기술한다. 라운드 키 생성을 위한 중간값 계산과 라운드 변환이 단일 데이터 프로세싱 블록으로 처리되도록 설계하였으며, 변형된 GFN(Generalized Feistel Network) 구조와 키 스케줄링 방법을 적용하여 데이터 프로세싱 블록과 키 스케줄링 블록의 회로를 단순화시켰다. Verilog HDL로 설계된 CLEFIA-128 프로세서를 FPGA로 구현하여 정상 동작함을 확인하였다. Vertex5 XC5VSX50T FPGA에서 823 slices로 구현되었으며, 최대 145 Mhz 클록으로 동작하여 105 Mbps의 성능을 갖는 것으로 예측되었다.

  • PDF

블록 암호 구조에 대한 불능 차분 공격 (Impossible Differential Cryptanalysis for Block Cipher Structures)

  • 김종성;홍석희;이상진;임종인;은희천
    • 정보보호학회논문지
    • /
    • 제13권3호
    • /
    • pp.119-127
    • /
    • 2003
  • Biha $m^{[4]}$등에 의해 소개된 불능 차분 공격은 불능 차분 특성을 이용하는 공격법이다 그러므로 블록 암호의 불능차분 공격에 대한 안전성은 불능 차분 특성에 의해 측정된다. 본 논문에서는 라운드 함수의 구체적인 형태를 고려하지 아니한 블록 암호 구조로부터 발생할 수 있는 여러 가지 불능 차분 특성을 찾는 널리 활용 가능한 방법을 제시한다. 이 방법을 이용하여 Nyber $g^{[12]}$ 가 제시한 일반화된 Feistel network와 일반화된 RC6 유사 구조에 대한 여러 가지 불능 차분 특성을 찾을 수 있다. 본 논문에서 다루는 모든 라운드 함수는 전단사 함수이다.

비밀 S-box를 사용한 GFN에 대한 안전성 분석 (Security Analysis on GFN with Secret S-box)

  • 이용성;강형철;홍득조;성재철;홍석희
    • 정보보호학회논문지
    • /
    • 제27권3호
    • /
    • pp.467-476
    • /
    • 2017
  • 본 논문에서는 라운드 함수의 업데이트 함수로 SP 구조를 사용하고 비밀 S-box가 적용된 GFN(Generalized Feistel Networks) Type I, Type II, Type III에 대한 안전성을 분석한다. 이 환경에서 공격자는 S-box에 대한 정보를 갖지 못한다. 인테그랄 공격 기법(Integral attack) 기반의 선택 평문 공격으로 9 라운드(Type I), 6 라운드(Type II), 6라운드(Type III)에 대한 비밀 S-box 정보를 복구할 수 있다. 선택 암호문 공격으로 전환할 경우 GFN Type I의 16 라운드까지 비밀 S-box의 정보가 복구된다. 결론적으로 m비트 비밀 S-box와 $k{\times}k$ MDS 행렬이 라운드 함수로 사용된 GFN Type I, Type II, Type III에 대하여 비밀 S-box를 복구하는데 ${\frac{2^{3m}}{32k}},{\frac{2^{3m}}{24k}},{\frac{2^{3m}}{36k}}$만큼의 시간복잡도가 필요하다.

IoT 보안 응용을 위한 경량 블록 암호 CLEFIA의 효율적인 하드웨어 구현 (An Efficient Hardware Implementation of Lightweight Block Cipher Algorithm CLEFIA for IoT Security Applications)

  • 배기철;신경욱
    • 한국정보통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.351-358
    • /
    • 2016
  • 경량 블록 암호 알고리즘 CLEFIA의 효율적인 하드웨어 설계에 대하여 기술한다. 설계된 CLEFIA 보안 프로세서는 128/192/256-비트의 세 가지 마스터키 길이를 지원하며, 변형된 GFN(Generalized Feistel Network) 구조를 기반으로 8-비트 데이터 패스로 구현되었다. 라운드키 생성을 위한 중간키 계산용 GFN과 암호 복호 라운드 변환용 GFN을 단일 데이터 프로세싱 블록으로 구현하여 하드웨어 복잡도를 최소화하였다. 본 논문의 GFN 블록은 라운드 변환과 128-비트의 중간 라운드키 계산을 위한 4-브랜치 GFN과 256-비트의 중간 라운드키 계산을 위한 8-브랜치 GFN으로 재구성되어 동작하도록 설계되었다. Verilog HDL로 설계된 CLEFIA 보안 프로세서를 FPGA로 구현하여 정상 동작함을 확인하였다. Vertex5 XC5VSX50T FPGA에서 최대 112 MHz 클록으로 동작 가능하며, 마스터키 길이에 따라 81.5 ~ 60 Mbps의 성능을 갖는 것으로 평가되었다.

경량 블록 암호 CLEFIA-128/192/256의 FPGA 구현 (An FPGA Implementation of Lightweight Block Cipher CLEFIA-128/192/256)

  • 배기철;신경욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.409-411
    • /
    • 2015
  • 본 논문은 128/192/256-비트의 마스터키 길이를 지원하는 경량 블록 암호 알고리즘 CLEFIA-128/192/256의 FPGA 설계에 대하여 기술한다. 라운드키 생성을 위한 중간키 생성과 라운드 변환이 단일 데이터 프로세싱 블록으로 처리되도록 설계하였으며, 변형된 GFN(Generalized Feistel Network) 구조와 키 스케줄링 방법을 적용하여 데이터 프로세싱 블록과 키 스케줄링 블록의 회로를 단순화시켰다. Verilog HDL로 설계된 CLEFIA 크립토 프로세서를 FPGA로 구현하여 정상 동작함을 확인하였다. Vertex5 XC5VSX50T FPGA에서 1,563개의 LUT FilpFlop pairs로 구현되었으며, 최대 112 Mhz 81.5/69/60 Mbps의 성능을 갖는 것으로 예측되었다.

  • PDF

SP F-함수를 갖는 4-브랜치 GFN-2 구조에 대한 기지키 공격 (Known-Key Attacks on 4-Branch GFN-2 Structures with SP F-Functions)

  • 홍득조
    • 정보보호학회논문지
    • /
    • 제30권5호
    • /
    • pp.795-803
    • /
    • 2020
  • 본 논문에서는 SP 구조의 F-함수를 가진 4-브랜치 GFN-2 구조에 대한 기지키 구별 공격(Known-Key Distinguishing Attack) 및 부분 충돌 공격(Partial-Collision Attack)을 연구한다. 첫 번째로, 이 구조에 대해 기지키 구별 공격이 15 라운드까지 가능함이 밝혀진다. 두 번째로, 마지막 라운드에 셔플 연산이 있는 경우, 부분 충돌 공격이 14 라운드까지 가능함이 밝혀진다. 마지막으로, 마지막 라운드에 셔플 연산이 없는 경우, 부분 충돌 공격이 15 라운드까지 가능함이 밝혀진다.

Security Analysis of the Khudra Lightweight Cryptosystem in the Vehicular Ad-hoc Networks

  • Li, Wei;Ge, Chenyu;Gu, Dawu;Liao, Linfeng;Gao, Zhiyong;Shi, Xiujin;Lu, Ting;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3421-3437
    • /
    • 2018
  • With the enlargement of wireless technology, vehicular ad-hoc networks (VANETs) are rising as a hopeful way to realize smart cities and address a lot of vital transportation problems such as road security, convenience, and efficiency. To achieve data confidentiality, integrity and authentication applying lightweight cryptosystems is widely recognized as a rather efficient approach for the VANETs. The Khudra cipher is such a lightweight cryptosystem with a typical Generalized Feistel Network, and supports 80-bit secret key. Up to now, little research of fault analysis has been devoted to attacking Khudra. On the basis of the single nibble-oriented fault model, we propose a differential fault analysis on Khudra. The attack can recover its 80-bit secret key by introducing only 2 faults. The results in this study will provides vital references for the security evaluations of other lightweight ciphers in the VANETs.

New Analysis of Reduced-Version of Piccolo in the Single-Key Scenario

  • Liu, Ya;Cheng, Liang;Zhao, Fengyu;Su, Chunhua;Liu, Zhiqiang;Li, Wei;Gu, Dawu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4727-4741
    • /
    • 2019
  • The lightweight block cipher Piccolo adopts Generalized Feistel Network structure with 64 bits of block size. Its key supports 80 bits or 128 bits, expressed by Piccolo-80 or Piccolo-128, respectively. In this paper, we exploit the security of reduced version of Piccolo from the first round with the pre-whitening layer, which shows the vulnerability of original Piccolo. As a matter of fact, we first study some linear relations among the round subkeys and the properties of linear layer. Based on them, we evaluate the security of Piccolo-80/128 against the meet-in-the-middle attack. Finally, we attack 13 rounds of Piccolo-80 by applying a 5-round distinguisher, which requires $2^{44}$ chosen plaintexts, $2^{67.39}$ encryptions and $2^{64.91}$ blocks, respectively. Moreover, we also attack 17 rounds of Piccolo-128 by using a 7-round distinguisher, which requires $2^{44}$ chosen plaintexts, $2^{126}$ encryptions and $2^{125.49}$ blocks, respectively. Compared with the previous cryptanalytic results, our results are the currently best ones if considering Piccolo from the first round with the pre-whitening layer.