• Title/Summary/Keyword: Generalized Dirichlet-multinomial regression

Search Result 2, Processing Time 0.017 seconds

Relation Between News Topics and Variations in Pharmaceutical Indices During COVID-19 Using a Generalized Dirichlet-Multinomial Regression (g-DMR) Model

  • Kim, Jang Hyun;Park, Min Hyung;Kim, Yerin;Nan, Dongyan;Travieso, Fernando
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1630-1648
    • /
    • 2021
  • Owing to the unprecedented COVID-19 pandemic, the pharmaceutical industry has attracted considerable attention, spurred by the widespread expectation of vaccine development. In this study, we collect relevant topics from news articles related to COVID-19 and explore their links with two South Korean pharmaceutical indices, the Drug and Medicine index of the Korea Composite Stock Price Index (KOSPI) and the Korean Securities Dealers Automated Quotations (KOSDAQ) Pharmaceutical index. We use generalized Dirichlet-multinomial regression (g-DMR) to reveal the dynamic topic distributions over metadata of index values. The results of our analysis, obtained using g-DMR, reveal that a greater focus on specific news topics has a significant relationship with fluctuations in the indices. We also provide practical and theoretical implications based on this analysis.

디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링 (Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis)

  • 안세환;고강욱;김영민
    • 지식경영연구
    • /
    • 제23권3호
    • /
    • pp.129-152
    • /
    • 2022
  • 디지털 전환의 핵심 인프라로서 데이터·네트워크·인공지능(D.N.A.) 분야의 확산과 유망 산업의 등장은 경제 전반에 걸쳐 활발한 디지털 혁신의 기반이 되고 있다. 본 연구에서는 텍스트마이닝 방법론을 적용하여 WoS 데이터베이스의 SCIE 급 색인에 해당하는 연구의 초록, 출판연도 및 연구분야를 입력변수로 활용하여 주요 토픽을 도출하였다. 우선, 단어 출현 빈도에 기반한 TF 및 TF-IDF 분석을 통해 주요 키워드를 확인하고, 이어서 g-DMR(Generalized Dirichlet-Multinomial Regression)을 이용하여 토픽 모델링을 수행하였는데, 다양한 형태의 변수를 메타정보로 활용 가능한 해당 토픽 모형의 이점으로 단순하게 토픽을 도출하는 것 이상의 의미를 적절하게 탐색할 수 있었다. 분석 결과에 따르면, 비즈니스 인텔리전스, 제조 생산 시스템, 서비스 가치 창출, 원격 진료, 디지털 교육 등의 토픽들이 디지털 전환에서 주요 연구주제인 것으로 식별되었다. 토픽 모델링의 결과를 요약하자면, 1) COVID-19 이후 비즈니스 인텔리전스를 주제로 하는 연구가 전 영역에서 활발하게 수행되고 있으며, 2) 제조 분야에서 지능형 제조 솔루션 및 메타버스 등의 이슈가 등장함에 따라 제조 생산 시스템에 관한 주제가 다시 한번 주목받고 있음을 확인하였다. 마지막으로, 3) 주제어 자체는 기술과 서비스의 측면에서 분리하여 볼 수 있지만, 다수의 연구에서 해당 기술들을 접목하여 적용된 다양한 서비스를 포괄적으로 다루고 있으므로 이를 별개로 해석하는 것이 바람직하지 못하다는 점을 알 수 있었다.