• 제목/요약/키워드: Generalization Error

검색결과 112건 처리시간 0.021초

Independent Component Analysis를 이용한 의료영상의 자동 분할에 관한 연구 (A Study of Automatic Medical Image Segmentation using Independent Component Analysis)

  • 배수현;유선국;김남형
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.64-75
    • /
    • 2003
  • Medical image segmentation is the process by which an original image is partitioned into some homogeneous regions like bones, soft tissues, etc. This study demonstrates an automatic medical image segmentation technique based on independent component analysis. Independent component analysis is a generalization of principal component analysis which encodes the higher-order dependencies in the input in addition to the correlations. It extracts statistically independent components from input data. Use of automatic medical image segmentation technique using independent component analysis under the assumption that medical image consists of some statistically independent parts leads to a method that allows for more accurate segmentation of bones from CT data. The result of automatic segmentation using independent component analysis with square test data was evaluated using probability of error(PE) and ultimate measurement accuracy(UMA) value. It was also compared to a general segmentation method using threshold based on sensitivity(True Positive Rate), specificity(False Positive Rate) and mislabelling rate. The evaluation result was done statistical Paired-t test. Most of the results show that the automatic segmentation using independent component analysis has better result than general segmentation using threshold.

Two-stage ML-based Group Detection for Direct-sequence CDMA Systems

  • Buzzi, Stefano;Lops, Marco
    • Journal of Communications and Networks
    • /
    • 제5권1호
    • /
    • pp.33-42
    • /
    • 2003
  • In this paper a two-stage maximum-likelihood (ML) detection structure for group detection in DS/CDMA systems is presented. The first stage of the receiver is a linear filter, aimed at suppressing the effect of the unwanted (i.e., out-of-grout) users' signals, while the second stage is a non-linear block, implementing a ML detection rule on the set of desired users signals. As to the linear stage, we consider both the decorrelating and the minimum mean square error approaches. Interestingly, the proposed detection structure turns out to be a generalization of Varanasi's group detector, to which it reduces when the system is synchronous, the signatures are linerly independent and the first stage of the receiver is a decorrelator. The issue of blind adaptive receiver implementation is also considered, and implementations of the proposed receiver based on the LMS algorithm, the RLS algorithm and subspace-tracking algorithms are presented. These adaptive receivers do not rely on any knowledge on the out-of group users' signals, and are thus particularly suited for rejection of out-of-cell interference in the base station. Simulation results confirm that the proposed structure achieves very satisfactory performance in comparison with previously derived receivers, as well as that the proposed blind adaptive algorithms achieve satisfactory performance.

텔타규칙을 이용한 다단계 신경회로망 컴퓨터:Recognitron III (Multilayer Neural Network Using Delta Rule: Recognitron III)

  • 김춘석;박충규;이기한;황희영
    • 대한전기학회논문지
    • /
    • 제40권2호
    • /
    • pp.224-233
    • /
    • 1991
  • The multilayer expanson of single layer NN (Neural Network) was needed to solve the linear seperability problem as shown by the classic example using the XOR function. The EBP (Error Back Propagation ) learning rule is often used in multilayer Neural Networks, but it is not without its faults: 1)D.Rimmelhart expanded the Delta Rule but there is a problem in obtaining Ca from the linear combination of the Weight matrix N between the hidden layer and the output layer and H, wich is the result of another linear combination between the input pattern and the Weight matrix M between the input layer and the hidden layer. 2) Even if using the difference between Ca and Da to adjust the values of the Weight matrix N between the hidden layer and the output layer may be valid is correct, but using the same value to adjust the Weight matrixd M between the input layer and the hidden layer is wrong. Recognitron III was proposed to solve these faults. According to simulation results, since Recognitron III does not learn the three layer NN itself, but divides it into several single layer NNs and learns these with learning patterns, the learning time is 32.5 to 72.2 time faster than EBP NN one. The number of patterns learned in a EBP NN with n input and output cells and n+1 hidden cells are 2**n, but n in Recognitron III of the same size. [5] In the case of pattern generalization, however, EBP NN is less than Recognitron III.

  • PDF

3D Magnetic Ball을 이용한 필기체 인식 향상 Coding System (Improved Pattern Recoginition Coding System of a Handwriting Character with 3D)

  • 심규승;이재홍;이병엽
    • 한국콘텐츠학회논문지
    • /
    • 제13권9호
    • /
    • pp.10-19
    • /
    • 2013
  • 본 논문에서는 그래프 패턴 인식을 신속히 처리하기 위한 새로운 자성 센서의 개발과 인식 시스템을 제안하고자 하였다. 그래픽을 입력받아 세션화와 균형화를 수행하는데 있어서 특징점의 사전 처리를 선결 수행함으로써 인식 속도를 증강하고 선처리된 특징점을 이용하여 끝점, 굴곡점, 분기점의 특징점을 별도로 추출하지 않는 방법으로 조사하여 모음이나 자음의 부분패턴의 그래프 사전을 비교하는 간단한 구조해석과 인식을 도모하였다. 본 논문의 성능 비교를 위하여 사용자의 필기체를 사전에 등록 인식하고 입력 필기체를 비교 인식하여 Unicode로 변환시켜 비교한 결과 70%의 초기 인식률에서 누적 인공학습 지능 처리 결과 95%의 이상의 인식률을 보여주고 있다.

A Study on the Trend Change Point of NBUE-property

  • Kim, Dae-Kyung
    • Communications for Statistical Applications and Methods
    • /
    • 제3권2호
    • /
    • pp.275-282
    • /
    • 1996
  • A life distribution F with survival function $\overline{F}$=1-F, finite mean $\mu$ and mean residual life m(t) is said to be NBUE(NWUE) if m(t)$\leq$($\geq$) .$\mu$ for t$\geq$0. This NBUE property can equivalently be characterized by the fact that $\varphi$(u)$\geq$($\leq$)u for 0$\leq$u$\leq$1, where $\varphi$(u) is the scaled total-time-on test transform of F. A generalization of the NBUE properties is that there is a value of p such that $\varphi$(u)\geq.u$ for 0$\leq$u$\leq$p and $\varphi$(u)\leq$$\leq$u$\leq$1, or vice versa. This means that we have a trend change in the NBUE property. In this paper we point out an error of Klefsjo's paper (1988). He erroneously takes advantage of trend change point of failure rate to calculate the empirical test size and power in lognormal distribution. We solves the trend change point of mean residual lifetime and recalculate the empirical test size and power of Klefsjo (1988) in mocensoring case.

  • PDF

A Panel Analysis on the Cross Border E-commerce Trade: Evidence from ASEAN Countries

  • HE, Yugang;WANG, Jingnan
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제6권2호
    • /
    • pp.95-104
    • /
    • 2019
  • Along with the economic globalization and network generalization, this provides a good opportunity to the development of cross-border e-commerce trade. Based on this background, this paper sets ASEAN countries as an example to exploit the determinants of cross-border e-commerce trade including the export and the import, respectively. The panel data from the year of 1998 to 2016 will be employed to estimate the relationship between cross-border e-commerce trade and relevant variables under the dynamic ordinary least squares and the error correction model. The findings of this paper show that there is a long-run relationship between cross-border e-commerce trade and relevant variables. Generally speaking, the GDP(+) and real exchange rate(-export & +import) have an effect on cross-border e-commerce trade. However, the population (+) and the terms of trade (-) only have an effect on cross-border e-commerce import. The empirical evidences show that the GDP and the real exchange rate always affect the development of cross-border e-commerce trade. Therefore, all ASEAN countries should try their best to develop the economic growth and focus on the exchange rate regime so as to meet the need of cross-border e-commerce trade development.

Bayesian and maximum likelihood estimations from exponentiated log-logistic distribution based on progressive type-II censoring under balanced loss functions

  • Chung, Younshik;Oh, Yeongju
    • Communications for Statistical Applications and Methods
    • /
    • 제28권5호
    • /
    • pp.425-445
    • /
    • 2021
  • A generalization of the log-logistic (LL) distribution called exponentiated log-logistic (ELL) distribution on lines of exponentiated Weibull distribution is considered. In this paper, based on progressive type-II censored samples, we have derived the maximum likelihood estimators and Bayes estimators for three parameters, the survival function and hazard function of the ELL distribution. Then, under the balanced squared error loss (BSEL) and the balanced linex loss (BLEL) functions, their corresponding Bayes estimators are obtained using Lindley's approximation (see Jung and Chung, 2018; Lindley, 1980), Tierney-Kadane approximation (see Tierney and Kadane, 1986) and Markov Chain Monte Carlo methods (see Hastings, 1970; Gelfand and Smith, 1990). Here, to check the convergence of MCMC chains, the Gelman and Rubin diagnostic (see Gelman and Rubin, 1992; Brooks and Gelman, 1997) was used. On the basis of their risks, the performances of their Bayes estimators are compared with maximum likelihood estimators in the simulation studies. In this paper, research supports the conclusion that ELL distribution is an efficient distribution to modeling data in the analysis of survival data. On top of that, Bayes estimators under various loss functions are useful for many estimation problems.

비대칭 금융 시계열을 위한 다중 임계점 변동성 모형 (Multiple-threshold asymmetric volatility models for financial time series)

  • 이효령;황선영
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.347-356
    • /
    • 2022
  • 본 논문에서는 금융 시계열 비대칭 변동성을 모형화하기 위해서 다중 임계점을 가진 비대칭-ARCH 점화식(A-ARCH(1))을 제안하고 있다. 특히 임계점이 두 개인 간단한 모형에 초점을 맞추어 설명하고 있으며 미국 S&P500 자료 분석을 통해 예시하였다. 다양한 A-ARCH(1) 모형의 예측력 비교를 위해 모수적-붓스트랩을 활용하여 예측오차의 평가 및 예측구간의 정확도를 설명하였다.

근육 활성화 모델 기반의 데이터 증강을 활용한 동시 동작 인식 프레임워크 (Simultaneous Motion Recognition Framework using Data Augmentation based on Muscle Activation Model)

  • 김세진;정완균
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.203-212
    • /
    • 2024
  • Simultaneous motion is essential in the activities of daily living (ADL). For motion intention recognition, surface electromyogram (sEMG) and corresponding motion label is necessary. However, this process is time-consuming and it may increase the burden of the user. Therefore, we propose a simultaneous motion recognition framework using data augmentation based on muscle activation model. The model consists of multiple point sources to be optimized while the number of point sources and their initial parameters are automatically determined. From the experimental results, it is shown that the framework has generated the data which are similar to the real one. This aspect is quantified with the following two metrics: structural similarity index measure (SSIM) and mean squared error (MSE). Furthermore, with k-nearest neighbor (k-NN) or support vector machine (SVM), the classification accuracy is also enhanced with the proposed framework. From these results, it can be concluded that the generalization property of the training data is enhanced and the classification accuracy is increased accordingly. We expect that this framework reduces the burden of the user from the excessive and time-consuming data acquisition.

Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets

  • Mengqi Wu;Xu Liu;Nan Gui;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang;Qian Zhao
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.339-352
    • /
    • 2023
  • Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.