• Title/Summary/Keyword: General base catalysis

Search Result 56, Processing Time 0.026 seconds

Mechanism of the Hydrolysis of 2-Phenyl-4H,5H,6H-3-methyl-3-thiazinium Perchlorate Derivatives

  • 김태린;이소영;변상용;김주창;한만소
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1213-1217
    • /
    • 1999
  • Hydrolysis reactions of 2-phenyl-4H,5H,6H-3-methyl-3-thiazinium perchlorate (PTP) and its derivatives at various pH have been investigated kinetically. The hydrolysis is quantitative, producing N-3-mercaptopropyl-N-methylbenzamide as the only product in the all pH ranges. The observed rate of hydrolysis of PTP was always of the first-order. For hydrolysis from PTP, Hammett ρvalues were 0.53, 0.84 and 1.13 for pH 5.0, 8.0, and 10.0, respectively. Bronsted βvalue was 0.53 for general base catalysis. This reaction is catalyzed by general w acetate concentration. However, as the amount of base becomes larger, the rate of hydrolysis reaction approaches the limiting values. The plot of log k vs. pH shows that the rate constants (kt) are two different regions in the profile; one part is directly proportional to hydroxide ion concentration and the other is not. On the bases of these result, the plausible hydrolysis mechanism and a reaction equation were proposed: Below pH 4.5, the hydrolysis was initiated by the addition of water to α-carbon. Above pH 9.0, the hydrolysis was proceeded by the addition of hydroxide ion to α-carbon. However, in the range of pH 4.5-8.0, these two reactions occured competitively.

Evidence for a Common Molecular Basis for Sequence Recognition of N3-Guanine and N3-Adenine DNA Adducts Involving the Covalent Bonding Reaction of (+)-CC-1065

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.25 no.1
    • /
    • pp.11-24
    • /
    • 2002
  • The antitumor antibiotic (+)-CC-1065 can alkylate N3 of guanine in certain sequences. A previous high-field $^1H$ NMR study on the$(+)-CC-1065d[GCGCAATTG*CGC]_2$ adduct ($^*$ indicates the drug alkylation site) showed that drag modification on N3 of guanine results in protonation of the cross-strand cytosine [Park, H-J.; Hurley, L. H. J. Am. Chem. Soc.1997, 119,629]. In this contribution we describe a further analysis of the NMR data sets together with restrained molecular dynamics. This study provides not only a solution structure of the (+)-CC-1065(N3- guanine) DNA duplex adduct but also new insight into the molecular basis for the sequence- specific interaction between (+)-CC-1065 and N3-guanine in the DNA duplex. On the basis of NOESY data, we propose that the narrow minor groove at the 7T8T step and conformational kinks at the junctions of 16C17A and 18A19T are both related to DNA bending in the drugDNA adduct. Analysis of the one-dimensional $^1H$ NMR (in $H_2O$) data and rMD trajectories strongly suggests that hydrogen bonding linkages between the 8-OH group of the (+)-CC-1065 A-sub-unit and the 9G10C phosphate via a water molecule are present. All the phenomena observed here in the (+)-CC-1065(N3-guanine) adduct at 5'$-AATTG^*$are reminiscent of those obtained from the studies on the (+)-CC-1065(N3-adenine) adduct at $5'-AGTTA^*$, suggesting that (+)-CC-1065 takes advantage of the conformational flexibility of the 5'-TPu step to entrap the bent structure required for the covalent bonding reaction. This study reveals a common molecular basis for (+)-CC-1065 alkylation at both $5'-TTG^*$ and $5'-TTA^*$, which involves a trapping out of sequence-dependent DNA conformational flexibility as well as sequence-dependent general acid and general base catalysis by duplex DNA.

Stoichiometric Effects. Correlation of the Rates of Solvolysis of Isopropenyl Chloroformate

  • Ryu, Zoon-Ha;Lee, Young-Ho;Oh, Yung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1761-1766
    • /
    • 2005
  • Solvolysis rates of isopropenyl chloroformate (3) in water, $D_2O$, $CH_3OD$ and in aqueous methanol, ethanol, 2,2,2-trifluoroethanol (TFE), acetone, 1,4-dioxane as well as TFE-ethanol at 10 ${^{\circ}C}$ are reported. Additional kinetic data for pure water, pure ethanol and 80%(w/w) 2,2,2-trifuoroethanol (T)-water (W) at various temperatures are also reported. These rates show the phenomena of maximum rates in specific solvents (30% (v/v) methanol-water and 20% (v/v) ethanol-water) and, variations in relative rates are small in aqueous alcohols. The kinetic data are analyzed in terms of GW correlations, steric effect, kinetic solvent isotope effects (KSIE), and a third order model based on general base catalysis (GBC). Solvolyses based on predominately stoichiometric solvation effect relative to medium solvation are proceeding in 3 and the results are remarkably similar to those for p-nitrobenzoyl chloride (4) in mechanism and reactivity.

Benzoic Acid Derivatives I, The Kinetics and Mechanism of the Nucleopilic Addition of Thiourea to Nitrone Derivatives (벤조산유도체 I, Nitrone 유도체에 대한 Thiourea의 친핵성 첨가반응메카니즘과 그 반응속도론적 연구)

  • Kim, Dong-Hwan;Lee, Ki-Chang;Ryu, Jung-Wook;Choi, Bong-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 1991
  • The rate constants for the addition reaction of thiourea to nitrone derivatives were determind at various pH and reaction rate equation which could be applied over a wide pH were obtained. The substituent effects and general base catalysis for the addition of thiourea to nitrone derivatives were observed. On the basis of these findings, a plausible reaction mechanism for the nucleophilic addition of thiourea to nitrone was proposed.

Indole Derivatives II. The Kinetics and Mechanism of the Hydrolysis of Indolylacrylophenone Derivatives (인돌 유도체 II. Indolylacrylophenone 유도체의 가수분해 반응에 대한 메카니즘과 그 반응 속도론적 연구)

  • Lee, Ki-Chang;Ryu, Jung-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.119-126
    • /
    • 1992
  • The kinetics of the hydrolysis of indolylacrylophenone derivatives(IA) was investigated by ultraviolet spectrophotometry in 30% dioxane-$H_2O$ at 25$^{\circ}C$ Rate equations were obtained over a wide pH range. On the basis of rate equation, general base catalysis and Hammett's plot, the mechanism of hydrolysis to the (IA) were proposed: Below pH 3.0, the hydrolysis of (IA) was proportional to hydronium ion concentration, between pH 4.0${\sim}$9.0 neutral water molecule and hydroxide ion were added to carbon-carbon double bond and over pH 10.0 hydrolysis of (IA) was proportional to hydroxide ion concentration.

A Structure-Based Activation Model of Phenol-Receptor Protein Interactions

  • 이경희
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 1997
  • Data from structure/activity studies in vir gene induction system have led to evaluate the working hypothesis of interaction between phenolic inducers and phenol binding proteins. The primary specificity in the association of a phenolic inducer with its receptor in our system is hypothesized to be the hydrogen bonding interactions through the ortho methoxy substituents as well as the proton transfer between the inducer and the binding protein. In this paper the proposed working model for phenol-mediating signal transduction was evaluated in several ways. The importance of the general acid-base catalysis was first addressed by the presence of an acidic residue and a basic residue in the phenol binding protein. Series of compounds were tested for vir gene expression activity to confirm the generation of a strong nucleophile by an acidic residue and an involvement of a basic residue as a proton acceptor. An attempt was made to correlate the pKa values of the phenolic compounds with vir gene induction activities as inducers to further support the proposed proton transfer mechanism. Finally, it was also observed that the regioselectively attached methoxy group on phenol compounds is required as the proper hydrogen bond acceptor.

Kinetic Studies on the Addition of Potassium Cyanide to α,N-Diphenylnitrone

  • 김태린;김영호;변상용
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.712-714
    • /
    • 1999
  • The rate constants for the nucleophilic addition of potassium cyanide to α,N-diphenylnitrone and its derivatives (p-OCH3, p-CH3, p-Cl, and p-NO2) were determined by ultraviolet spectrophotometer at 25℃, and the rate equations which can be applied over a wide pH range were obtained. On the basis of pH-rate profile, adduct analysis, general base catalysis and substituent effect, a plausible mechanism of this addition reaction was proposed: At high pH, the cyanide ion to carbon-nitrogen double bond was rate controlling, however, in acidic media, the reaction proceeded by the addition of hydrogen cyanide molecule to carbon-nitrogen double bond after protonation at oxygen of a,N-diphenylnitrone. In the range of neutral pH, these two reactions occured competitively.

Kinetic Studies on the Nucleophilic Addition of Thiophenol Derivatives to 4'-[N- (9-Acridinyl) ]-1'-( N- methanesulfonyl) -3'-methoxyquinonediimide

  • 김태린;정동인;변상용
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.374-379
    • /
    • 1997
  • The rate constants for the nucleophilic addition of thiophenol derivatives (p-OCH3, H, p-CH3, m-CH3, p-Br and p-NO2) to 4'-[N-(9-acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide (AMQD) were determined by ultraviolet spectrophotometer in water at 5 ℃, and rate equations which can be applied over a wide pH range were obtained. On the basis of pH-rate profile, Bronsted plot, adduct analysis, general base catalysis and substituent effect, a plausible mechanism of this addition reaction was proposed: Below pH 2.5, the reaction proceeded by the addition of thiophenol molecule to 6'-position of quinonoid after protonation at the acridinyl nitrogen. Above pH 6.2, the addition of sulfide anion to 6'-position of quinonoid was rate controlling. However, in the range of pH 3.0-6.0, these two reactions occured competively.

Transition-State Structures for Solvolysis of Methanesulfonyl Chloride

  • 양기열;강금덕;구인선;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1186-1191
    • /
    • 1997
  • Solvolyses of methanesulfonyl chloride (CH3SO2Cl) in water and methanol have been studied theoretically using ab initio self-consistent reaction field (SCRF) molecular orbital method. All stationary structures including transition state on the potential energy surface in solution have been found and compared with the gas phase structures. The overall reaction occurs via a concerted SN2 mechanism with a non-cyclic trigonal bipyramidal transition state, and the activation barrier is lowered significantly in solution. The transition state for the hydrolysis reaction is looser than that for the methanolysis reaction, and this is in accord with the experimental findings that an SN2 type mechanism, which is shifted toward an SN1 process or an SAN process in the hydrolysis and alcoholysis reaction, respectively, takes place. The catalytic role of additional solvent molecules appears to be a purely general-base catalysis based on the linear transition structures. Experimental barrier can be estimated by taking into account the desolvation energy of nucleophile in the reaction of methanesulfonyl chloride with bulk solvent cluster as a nucleophile.

The Studies on Substituent and Kinetic Solvent Isotope Effect in Solvolyses of Phenyl Chloroformates

  • 구인선;이지선;양기열;강금덕;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.573-576
    • /
    • 1999
  • The rate constants and kinetic solvent isotope effects (KSIE, KMeOH/kMeOD) for solvolyses of para-substituted phenylchloroformates in CH3OH, CH3OD, H2O, D2O, 50% D2O-CH3OD were determined at 15.0 and 25.0℃ using conductometric method. Kinetic solvent isotope effects for the solvolyses of para-substituted phenyl chloroformates were 2.39-2.51, 2.21-2.28, and 1.67-1.69 for methanol, 50% aqueous methanol, and water, respectively. The slopes of Hammett plot for solvolysis of para-substituted phenyl chloroformates in methanol, 50% aqueous methanol, and water were 1.49, 1.17 and 0.89, respectively. The Hammett type plot of KSIE, log (KSIE) versus p, can be a useful mechanistic tool for solvolytic reactions. The slopes of such straight lines for para-substituted phenyl chloroformates are almost zero in methanol, 50% aqueous methanol, and water. It was shown that the reaction proceeds via an associative SN2 and/or general base catalysis addition-elimination (SAN) mechanism based on activation parameters, Hammett p values, and slopes of Hammett type plot of KS-IE.