Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.
Corporate bankruptcy can cause great losses not only to stakeholders but also to many related sectors in society. Through the economic crises, bankruptcy have increased and bankruptcy prediction models have become more and more important. Therefore, corporate bankruptcy has been regarded as one of the major topics of research in business management. Also, many studies in the industry are in progress and important. Previous studies attempted to utilize various methodologies to improve the bankruptcy prediction accuracy and to resolve the overfitting problem, such as Multivariate Discriminant Analysis (MDA), Generalized Linear Model (GLM). These methods are based on statistics. Recently, researchers have used machine learning methodologies such as Support Vector Machine (SVM), Artificial Neural Network (ANN). Furthermore, fuzzy theory and genetic algorithms were used. Because of this change, many of bankruptcy models are developed. Also, performance has been improved. In general, the company's financial and accounting information will change over time. Likewise, the market situation also changes, so there are many difficulties in predicting bankruptcy only with information at a certain point in time. However, even though traditional research has problems that don't take into account the time effect, dynamic model has not been studied much. When we ignore the time effect, we get the biased results. So the static model may not be suitable for predicting bankruptcy. Thus, using the dynamic model, there is a possibility that bankruptcy prediction model is improved. In this paper, we propose RNN (Recurrent Neural Network) which is one of the deep learning methodologies. The RNN learns time series data and the performance is known to be good. Prior to experiment, we selected non-financial firms listed on the KOSPI, KOSDAQ and KONEX markets from 2010 to 2016 for the estimation of the bankruptcy prediction model and the comparison of forecasting performance. In order to prevent a mistake of predicting bankruptcy by using the financial information already reflected in the deterioration of the financial condition of the company, the financial information was collected with a lag of two years, and the default period was defined from January to December of the year. Then we defined the bankruptcy. The bankruptcy we defined is the abolition of the listing due to sluggish earnings. We confirmed abolition of the list at KIND that is corporate stock information website. Then we selected variables at previous papers. The first set of variables are Z-score variables. These variables have become traditional variables in predicting bankruptcy. The second set of variables are dynamic variable set. Finally we selected 240 normal companies and 226 bankrupt companies at the first variable set. Likewise, we selected 229 normal companies and 226 bankrupt companies at the second variable set. We created a model that reflects dynamic changes in time-series financial data and by comparing the suggested model with the analysis of existing bankruptcy predictive models, we found that the suggested model could help to improve the accuracy of bankruptcy predictions. We used financial data in KIS Value (Financial database) and selected Multivariate Discriminant Analysis (MDA), Generalized Linear Model called logistic regression (GLM), Support Vector Machine (SVM), Artificial Neural Network (ANN) model as benchmark. The result of the experiment proved that RNN's performance was better than comparative model. The accuracy of RNN was high in both sets of variables and the Area Under the Curve (AUC) value was also high. Also when we saw the hit-ratio table, the ratio of RNNs that predicted a poor company to be bankrupt was higher than that of other comparative models. However the limitation of this paper is that an overfitting problem occurs during RNN learning. But we expect to be able to solve the overfitting problem by selecting more learning data and appropriate variables. From these result, it is expected that this research will contribute to the development of a bankruptcy prediction by proposing a new dynamic model.
Linear and nonlinear time history analyses have been becoming more common in seismic analysis and design of structures with advances in computer technology and earthquake engineering. One of the most important issues for such analyses is the selection of appropriate acceleration time histories and matching these histories to a code design acceleration spectrum. In literature, there are three sources of acceleration time histories: artificial records, synthetic records obtained from seismological models and accelerograms recorded in real earthquakes. Because of the increase of the number of strong ground motion database, using and scaling real earthquake records for seismic analysis has been becoming one of the most popular research issues in earthquake engineering. In general, two methods are used for scaling actual earthquake records: scaling in time domain and frequency domain. The objective of this study is twofold: the first is to discuss and summarize basic methodologies and criteria for selecting and scaling ground motion time histories. The second is to analyze scaling results of time domain method according to ASCE 7-05 and Eurocode 8 (1998-1:2004) criteria. Differences between time domain method and frequency domain method are mentioned briefly. The time domain scaling procedure is utilized to scale the available real records obtained from near fault motions and far fault motions to match the proposed elastic design acceleration spectrum given in the Eurocode 8. Why the time domain method is preferred in this study is stated. The best fitted ground motion time histories are selected and these histories are analyzed according to Eurocode 8 (1998-1:2004) and ASCE 7-05 criteria. Also, characteristics of both near fault ground motions and far fault ground motions are presented by the help of figures. Hence, we can compare the effects of near fault ground motions on structures with far fault ground motions' effects.
Journal of the Korean Data and Information Science Society
/
v.28
no.5
/
pp.1099-1107
/
2017
In this study, we analyzed the determinants of wages of college graduates by using the data of "2014 Graduates Occupational Mobility Survey" conducted by Korea Employment Information Service. In general, wages contain two complex pieces of information about whether an individual is employed and the size of the wage. However, in many previous researches on wage determinants, sample selection bias tends to be generated by performing linear regression analysis using only information on wage size. We used the Heckman sample selection models for analysis to overcome this problem. The main results are summarized as follows. First, the validity of the Heckman's sample selection model is statistically significant. Male is significantly higher in both job probability and wage than female. As age increases and parents' income increases, both the probability of employment and the size of wages are higher. Finally, as the university satisfaction increases and the number of certifications acquired increased, both the probability of employment and the wage tends to increase.
Marketing of traditional doenjang (a kind of fermented soybean product) is now focusing on its health advantages, being proven to have anti-viral, anti-cancer and anti-oxidant effects. The purpose of this study is to investigate the consumption patterns of traditional doenjang in the households managed by different generations of women living in Gyeonggi area. Six hundred housewives answered the questionnaire. Statistical analyses were performed on 590 subjects using SAS (ver 8.1). Chi-square tests and General Linear Models were used. The age distribution of housewives was as follows: 42.9% were in their 30s; 40.9% were in their 40s; and 16.2% were in their 50s. 57.5% of subjects graduated with high school education while 72.8% of subjects did housework only. Overall, 47.2%, prepared their doenjang themselves, while the remainder purchased it or received it from relatives. This percentage differed however according to age group, as self-preparation of doenjang was found in only 22% of housewives in their 30s, but increased to 83% of subjects in their 50s. 53.4% of subjects had their doenjang donated to them by relatives, compared with only 3.1 % of subjects in their 50s. Most of dishes using doenjang were soups and stews. Those housewives in their 50s made significantly higher use of doenjang in soup, wrapping vegetables (ssamjang), seasoning, and flat cake (jangttok). Doenjang dishes were prepared for the husband in the family 59.2% of the time, followed by housewives 15.4% of the time. Annual consumption of doenjang was 5.1kg. and Kanjang was 4.4L per household; there was no significant difference between the age groups respecting annual consumption. From such results, we may assume a decrease in home-made doenjang among younger generations and an increase in the amount of purchased doenjang. We can predict an increased need for doenjang of better quality. Also the development of new products such as ready-to-eat or fast food variants would better serve the trend towards convenience.
Journal of Korean Institute of Industrial Engineers
/
v.6
no.2
/
pp.21-29
/
1980
This paper deals with the capital budgeting problem of a firm where investments are risky and interrelated. The established models might be classified into two categories; One is the chance-constrained programming model and the other is the expected utility maximization model. The former has a rather limited objective function and does not consider the risk in direct manner. The latter, on the other hand, might lead to a wrong decision because it uses an approximate value of expected utility. This paper attempts to extend the applicability of the chance-constrained programming model by modifying its objective function into a more general form. The capital budgeting problem is formulated as a nonlinear 0-1 integer programming problem first, and is formulated into a linear 0-1 integer programming problem for finding a lower-bound solution of the original problem. The optimal solution of the original problem is then obtained by branch & bound algorithm.
Objective : Stroke is one of the most common causes of death in Korea. This study was done to evaluate the association of complete blood count (CBC) with the risk of hemorrhagic stroke and ischemic stroke. Methods : In 217-case patients with ischemic stroke or hemorrhagic stroke and 146 healthy control subjects without stroke, hypertension, diabetes mellitus, hyperlipidemia, or ischemic heart disease and 160 controls without ischemic stroke or hemorrhagic stroke, we tested and compared white blood cell count (WBC), red blood cell count (RBC), hemoglobin (Hgb), hematocrit (Hct) and platelet. These data were statically analyzed by general linear models and binary logistic regression analysis to get each adjusted odds ratio. Results :The level of WBC was significantly higher in all cases. The level of RBC, Hct and Hgb was significantly lower in patients of ischemic stroke. The level of platelet was significantly higher in patients of ischemic stroke. Conclusion : These results suggest high WBC may be a risk factor of hemorrhagic stroke and ischemic stroke and low RBC, low Hct, low Hgb and high platelet may be risk factors of ischemic stroke in Koreans.
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.5
/
pp.833-842
/
2017
In this study, the design methodology of radial basis function neural networks based on incremental K-means clustering is introduced for learning and processing the big data. If there is a lot of dataset to be trained, general clustering may not learn dataset due to the lack of memory capacity. However, the on-line processing of big data could be effectively realized through the parameters operation of recursive least square estimation as well as the sequential operation of incremental clustering algorithm. Radial basis function neural networks consist of condition part, conclusion part and aggregation part. In the condition part, incremental K-means clustering algorithms is used tweights of the conclusion part are given as linear function and parameters are calculated using recursive least squareo get the center points of data and find the fitness using gaussian function as the activation function. Connection s estimation. In the aggregation part, a final output is obtained by center of gravity method. Using machine learning data, performance index are shown and compared with other models. Also, the performance of the incremental K-means clustering based-RBFNNs is carried out by using PSO. This study demonstrates that the proposed model shows the superiority of algorithmic design from the viewpoint of on-line processing for big data.
Ru, Y.J.;Fischer, M.;Glatz, P.C.;Wyatt, S.;Swanson, K.;Falkenberg, S.
Asian-Australasian Journal of Animal Sciences
/
v.16
no.5
/
pp.685-692
/
2003
Information on nutrient requirements and forage intake of fallow weaner deer is required for the development of feeding strategies during the year. An experiment was conducted in which 60 fallow weaner deer (grazing on medic and ryegrass based pastures) were supplemented with a concentrated diet at three levels. The diet contained 2% minerals, 30% lupin and 68% barley grain. Twelve deer from each treatment were dosed with commercial alkane capsules in May, June, July, September and October to predict nutrient intake. The relationships between body weight gain and intake of metabolisable energy and crude protein were established using a general linear models analysis. Dry matter intake from pastures ranged from 0.137 kg to 0.304 kg in May and June and increased to 1.2 kg in October. Nutrient intake from pastures was strongly influenced by amount of supplementary feed and gender. Digestible energy intake from pastures was 1.3, 3.8 and 6.1 MJ/day higher for males than females in July, August and October, respectively. The protein and energy intake was strongly correlated with body weight gain. The energy requirement for maintenance were 7.3, 8.2, 10.2, 10.2 and 10.7 MJ DE/day and the DE required for each kg body weight gain were 19, 18, 29, 34 and 49 MJ in May, June, August and October, respectively. The protein requirement for maintenance was 12.2, 12.6, 15.0, 11.4 and $8.5g/W^{0.75}$ in May, June, July, August and October, respectively. The nutrient requirement defined from this study can be used to assist farmers to explore the possible pasture and stock management practices under southern Australian conditions. However, further research is required to develop rapid and cheap methods for estimating dry matter intake, nutritive value of pastures and to quantify the potential growth rate of fallow deer in southern Australia.
Four biological candidate genes, natural resistance associated macrophage protein 1 (SLC11A1 or NRAMP), prosaposin (PSAP), interferon Gamma (IFNG), and toll-like receptor 4 (TLR4), were examined to identify single nucleotide polymorphisms (SNP) and associations of the SNP with antibody response kinetics in hens. An $F_2$ population was produced by mating $G_0$ highly inbred (<99%) males of two MHC-congenic Fayoumi lines with highly inbred Leghorn hens. The $F_2$ hens (n = 158) were injected twice with SRBC and whole, fixed Brucella abortus (BA). Blood samples were obtained before each immunization, at 7 d after primary immunization, and at several time points after secondary immunization. Minimum titers (Ymin) and the time needed to reach them (Tmin), and maximum (Ymax) titers and the time needed to reach them (Tmax), were estimated from the seven post-secondary immunization titers using a nonlinear regression model. The $F_2$ hens were genotyped for the four candidate genes by using PCR-RFLP for one SNP per gene, which identified the parental allele. General linear models were used to test associations of SNP genotypes with antibody response parameters and BW measured at 4 ages. The IFNG SNP was highly significantly (p<0.0125) associated with primary response to SRBC, Tmin to BA, Ymin to BA, and 12-week BW. The current study demonstrated that the novel IFNG promoter SNP was associated with antibody kinetics for BA and SRBC in laying hens, and also with BW, suggesting that this cytokine may play a pivotal role in the relationship between immune function and growth.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.