• Title/Summary/Keyword: Gene-trap

Search Result 82, Processing Time 0.018 seconds

Purification and Characterization of Recombinant Acetohydroxyacid Synthase Catalytic Subunit in Haemophilus influenzae (Haemophilus influenzae의 Acetohydroxyacid Synthase Catalytic Subunit 재조합 단백질 발현 및 특성)

  • Noh, Kyoung-Mi;Choi, Kyoung-Jae;Park, Joon-Shik;Yoon, Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.19-22
    • /
    • 2007
  • Acetohydroxyacid synthase (E.C.2.2.1.6., AHAS) is the enzyme that catalyses the first step in the synthesis of the branched-chain amino acids valine, leucine and isoleucine. The AHAS gene (TIGR access code HI2585) from Heamophilus influenzae was cloned into the bacterial expression vector pET-28a and expressed in the Escherichia coli strain BL21(DE3). The expressed enzyme was purified by $Ni^{2+}-charged$ HiTrap chelating HP column. The purified enzyme appears as a single band on SDS-PAGE with a molecular mass of about 63.9 kDa. The enzyme exhibits absolute dependence on the three cofactors FAD, $MgCl_{2}$ and thiamine diphosphate for activity. Specific activity of purified enzyme has 3.22 unit/mg and optimum activity in the pH 7.5 at $37^{\circ}C$. This enzyme activity has an effect on the buffer. When comparing the enzyme activity against the organic solvent, it followed in type and the difference it is but even from the aqueous solution where the organic solvent is included with the fact that the enzyme activity is maintained.

High-Level Expression of T4 Endonuclease V in Insect Cells as Biologically Active Form

  • Kang, Chang-Soo;Son, Seung-Yeol;Bang, In-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1583-1590
    • /
    • 2006
  • T4 endonuclease V (T4 endo V) [EC 3. 1. 25. 1], found in bacteriophage T4, is responsible for excision repair of damaged DNA. The enzyme possesses two activities: a cyclobutane pyrimidine dimer DNA glycosylase (CPD glycosylase) and an apyrimidic/apurinic endonuclease (AP lyase). T4 denV (414 bp cDNA) encoding T4 en do V (138 amino acid) was synthesized and expressed using either an expression vector, pTriEx-4, in E. coli or a baculovirus AcNPV vector, pBacPAK8, in insect cells. The recombinant His-Tag/T4 endo V (rHis-Tag/T4 endo V) protein expressed from bacteria was purified using one-step affinity chromatography with a HiTrap Chelating HP column and used to make rabbit anti-His-Tag/T4 endo V polyclonal antibody for detection of recombinant T4 endo V (rT4 endo V) expressed in insect cells. In the meantime, the recombinant baculovirus was obtained by cotransfection of BacPAK6 viral DNA and pBP/T4 endo V in Spodoptera frugiperda (Sf21) insect cells, and used to infect Sf21 cells to overexpress T4 endo V protein. The level of rT4 endo V protein expressed in Sf21 cells was optimized by varying the virus titers and time course of infection. The optimal expression condition was set as follows; infection of the cells at a MOI of 10 and harvest at 96 h post-infection. Under these conditions, we estimated the amount of rT4 endo V produced in the baculovirus expression vector system to be 125 mg/l. The rT4 endo V was purified to homogeneity by a rapid procedure, consisting of ion-exchange, affinity, and reversed phase chromatographies, based on FPLC. The rT4 endo V positively reacted to an antiserum made against rHis-Tag/T4 endo V and showed a residual nicking activity against CPD-containing DNA caused by UV. This is the first report to have T4 endo V expressed in an insect system to exclude the toxic effect of a bacterial expression system, retaining enzymatic activity.