• 제목/요약/키워드: Gene-set enrichment analysis

검색결과 42건 처리시간 0.036초

Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice

  • Lee, Jeonggeun;Park, Joonwoo;Lee, Yong Yook;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.519-526
    • /
    • 2020
  • Background: Bisphenol A (BPA), known as an endocrine disruptor, is widely used in the world. BPA is reported to cause inflammation-related diseases. Korean Red Ginseng (KRG) has been used safely in human for a long time for the treatment of diverse diseases. KRG has been reported of its mitigating effect on menopausal symptoms and suppress adipose inflammation. Here, we investigate the protective effect of orally administered KRG on the impacts of BPA in the liver and uterus of menopausal mice model. Methods: The transcriptome analysis for the effects of BPA on mice liver was evaluated by Gene Expression Omnibus (GEO) database-based data (GSE26728). In vivo assay to evaluate the protective effect of KRG on BPA impact in ovariectomized (OVX) mice were designed and analyzed by RNA sequencing. Results: We first demonstrated that BPA induced 12 kinds of gene set in the liver of normal mice. The administration of BPA and KRG did not change body, liver, and uterine weight in OVX mice. KRG downregulated BPA-induced inflammatory response and chemotaxis-related gene expression. Several gene set enrichment analysis (GSEA)-derived inflammatory response genes increased by BPA were inhibited by KRG in OVX mice. Conclusion: Our data suggest that BPA has commonly influenced inflammatory response effects on both normal and OVX mice. KRG protects against BPA impact of inflammatory response and chemotaxis in OVX mouse models. Our comparative analysis will provide new insight into the efficacy of KRG on endocrine disrupting chemicals and OVX mouse.

Comprehensive Bioinformation Analysis of the MRNA Profile of Fascin Knockdown in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Luo, Lie-Wei;Li, Chun-Quan;Xie, Jian-Jun;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7221-7227
    • /
    • 2013
  • Background: Fascin, an actin-bundling protein forming actin bundles including filopodia and stress fibers, is overexpressed in multiple human epithelial cancers including esophageal squamous cell carcinoma (ESCC). Previously we conducted a microarray experiment to analyze fascin knockdown by RNAi in ESCC. Method: In this study, the differentially expressed genes from mRNA expression profilomg of fascin knockdown were analyzed by multiple bioinformatics methods for a comprehensive understanding of the role of fascin. Results: Gene Ontology enrichment found terms associated with cytoskeleton organization, including cell adhesion, actin filament binding and actin cytoskeleton, which might be related to fascin function. Except GO categories, the differentially expressed genes were annotated by 45 functional categories from the Functional Annotation Chart of DAVID. Subpathway analysis showed thirty-nine pathways were disturbed by the differentially expressed genes, providing more detailed information than traditional pathway enrichment analysis. Two subpathways derivated from regulation of the actin cytoskeleton were shown. Promoter analysis results indicated distinguishing sequence patterns and transcription factors in response to the co-expression of downregulated or upregulated differentially expressed genes. MNB1A, c-ETS, GATA2 and Prrx2 potentially regulate the transcription of the downregulated gene set, while Arnt-Ahr, ZNF42, Ubx and TCF11-MafG might co-regulate the upregulated genes. Conclusions: This multiple bioinformatic analysis helps provide a comprehensive understanding of the roles of fascin after its knockdown in ESCC.

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • 제20권3호
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.

Partial Least Squares Based Gene Expression Analysis in EBV-Positive and EBV-Negative Posttransplant Lymphoproliferative Disorders

  • Wu, Sa;Zhang, Xin;Li, Zhi-Ming;Shi, Yan-Xia;Huang, Jia-Jia;Xia, Yi;Yang, Hang;Jiang, Wen-Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6347-6350
    • /
    • 2013
  • Post-transplant lymphoproliferative disorder (PTLD) is a common complication of therapeutic immunosuppression after organ transplantation. Gene expression profile facilitates the identification of biological difference between Epstein-Barr virus (EBV) positive and negative PTLDs. Previous studies mainly implemented variance/regression analysis without considering unaccounted array specific factors. The aim of this study is to investigate the gene expression difference between EBV positive and negative PTLDs through partial least squares (PLS) based analysis. With a microarray data set from the Gene Expression Omnibus database, we performed PLS based analysis. We acquired 1188 differentially expressed genes. Pathway and Gene Ontology enrichment analysis identified significantly over-representation of dysregulated genes in immune response and cancer related biological processes. Network analysis identified three hub genes with degrees higher than 15, including CREBBP, ATXN1, and PML. Proteins encoded by CREBBP and PML have been reported to be interact with EBV before. Our findings shed light on expression distinction of EBV positive and negative PTLDs with the hope to offer theoretical support for future therapeutic study.

Gene Expression Profiling of the Habenula in Rats Exposed to Chronic Restraint Stress

  • Yoo, Hyeijung;Kim, Hyun Jung;Yang, Soo Hyun;Son, Gi Hoon;Gim, Jeong-An;Lee, Hyun Woo;Kim, Hyun
    • Molecules and Cells
    • /
    • 제45권5호
    • /
    • pp.306-316
    • /
    • 2022
  • Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.

Gene Expression Profile and Its Interpretation in Squamous Cell Lung Cancer

  • Park, Dong-Yoon;Kim, Jung-Min;Kim, Ja-Eun;Yoo, Chang-Hyuk;Lee, Han-Yong;Song, Ji-Young;Hwang, Sang-Joon;Yoo, Jae-Cheal;Kim, Sung-Han;Park, Jong-Ho;Yoon, Jeong-Ho
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.273-278
    • /
    • 2006
  • 95 squamous cell lung carcinoma samples (normal tissue: 40 samples, tumor: 55 samples) were analyzed with 8 K cDNA microarray. 1-way ANOVA test was employed to select differentially expressed genes in tumor with FDR<0.01. Among the selected 1,655 genes, final 212 genes were chosen according to the expression fold change and used for following analysis. The expression of up-regulated 64 genes was verified with Reverse Transcription PCR and 10 genes were identified as candidates for SCC markers. In our opinion, those candidates can be exploited as diagnostic or therapeutic purposes. Gene Ontology (GO) based analysis was performed using those 212 genes, and following categories were revealed as significant biological processes: Immune response (GO: 0006955), antigen processing (GO: 0030333), inflammatory response (GO: 0006954), Cell adhesion (GO: 0007155), and Epidermis differentiation (GO: 0008544). Gene set enrichment analysis (GSEA) also carried out on overall gene expression profile with 522 functional gene sets. Glycolysis, cell cycle, K-ras and amino acid biosynthesis related gene sets were most distinguished. These results are consistent with the known characteristics of SCC and may be interconnected to rapid cell proliferation. However, the unexpected results from ERK activation in squamous cell carcinoma gripped our attention, and further studies are under progress.

Genome-wide Response of Normal WI-38 Human Fibroblast Cells to 1,763 MHz Radiofrequency Radiation

  • Im, Chang-Nim;Kim, Eun-Hye;Park, Ae-Kyung;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • 제8권1호
    • /
    • pp.28-33
    • /
    • 2010
  • Increased exposure of human to RF fields has raised concerns for its potential adverse effects on our health. To address the biological effects of RF radiation, we used genome wide gene expression as the indicator. We exposed normal WI-38 human fibroblast cells to 1763 MHz mobile phone RF radiation at a specific absorption rate (SAR) of 60 W/kg with an operating cooling system for 24 h. There were no alterations in cell numbers or morphology after RF exposure. Through microarray analysis, we identified no differentially expressed genes (DEGs) at the 0.05 significance level after controlling for multiple testing errors with the Benjaminiochberg false discovery rate (BH FDR) method. Meanwhile, 82 genes were differentially expressed between RF-exposed cells and controls when the significance level was set at 0.01 without correction for multiple comparisons. We found that 24 genes (0.08% of the total genes examined) were changed by more than 1.5-fold on RF exposure. However, significant enrichment of any gene set or pathway was not observed from the functional annotation analysis. From these results, we did not find any evidence that non-thermal RF radiation at a 60-W/kg SAR significantly affects cell proliferation or gene expression in WI-38 cells.

Endoplasmic recticulum stress와 관련된 유전자기능과 전사조절인자의 In silico 분석 (In Silico Analysis of Gene Function and Transcriptional Regulators Associated with Endoplasmic Recticulum (ER) Stress)

  • 김태민;여지영;박찬선;이문수;정명호
    • 생명과학회지
    • /
    • 제19권8호
    • /
    • pp.1159-1163
    • /
    • 2009
  • ER stress에 관련된 유전자의 기능변화와 전사조절인자 분석하기 위해 ER stress를 유도한 간세포에서 expression microarray로 유전자 발현을 확보한 후 GSECA로 분석하였다. ER stress가 유도되면, ER에 주어지는 과도한 부하를 감소시키는 기능들이 증가하는 반면, ER stress가 더 증가함에 따라 ATP 생성이나 DNA repair, 더 나아가 세포분열의 기능이 감소하는 등 세포가 damage을 받음을 알 수 있었다. ER stress에 관련된 전사조절인자로는 FOX04, AP-1, FOX03, HNF4, IRF-1, GATA 등의 전사조절인자들이 ER stress에 의해 발현이 증가하는 유전자들의 promoter에 공통적으로 존재하였으며, E2F, Nrf-1, Elk-1, YY1, CREB, MTF-1, STAT-1, ATF 등의 전사인자들이 발현이 감소하는 유전자들의 promoter에서 공통적으로 존재하여, 이들의 전사인자들이 ER stress에 의한 유전자의 발현조절에 중요한 역할을 하는 전사조절인자임을 알 수 있었다.

웹 기반 단일염기다형성 연관 패스웨이 분석 도구 (PRaDA : Web-based analyzer for Pathway Relation and Disease Associated SNP)

  • 유기진;박수호;류근호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권9호
    • /
    • pp.1795-1801
    • /
    • 2018
  • 질환의 원인을 규명하기 위해 전장유전체 연관분석 (GWAS; Genome-Wide Association Study) 연구가 활발히 진행되고 유전체 레벨의 단일염기다형성 (SNP; Single-nucleotide polymorphism)이 많이 밝혀지고 있다. 그러나 단일염기다형성의 연관분석을 통해 질환이 발병하는 생물학적 메카니즘을 이해하기 어렵기 때문에 유전자, 생물학적 패스웨이 및 질환 등의 연관성 분석이 이전보다 더욱 중요하다. 본 논문에서는 단일염기다형성과 관련된 유전자와 패스웨이, 질환 정보를 검색하여 통합 분석하는 서비스를 제공하는 PRaDA 웹 시스템을 제안하였다. PRaDA는 사용자로부터 입력받은 유의한 몇몇의 단일염기다형성들과 관련된 유전자 및 패스웨이 뿐만 아니라, 유의하지 않은 다수의 단일염기다형성 집합의 간접적인 영향을 파악하기 위해 기능적으로 근접한 패스웨이를 검색하고 통계적 분석을 실행한다. 사용자들은 PRaDA가 제공하는 통합된 정보를 통해 질병의 전반적인 이해를 할 수 있다.

HPAI-resistant Ri chickens exhibit elevated antiviral immune-related gene expression

  • Thi Hao Vu;Jubi Heo;Yeojin Hong;Suyeon Kang;Ha Thi Thanh Tran;Hoang Vu Dang;Anh Duc Truong;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.13.1-13.11
    • /
    • 2023
  • Background: Highly pathogenic avian influenza viruses (HPAIVs) is an extremely contagious and high mortality rates in chickens resulting in substantial economic impact on the poultry sector. Therefore, it is necessary to elucidate the pathogenic mechanism of HPAIV for infection control. Objective: Gene set enrichment analysis (GSEA) can effectively avoid the limitations of subjective screening for differential gene expression. Therefore, we performed GSEA to compare HPAI-infected resistant and susceptible Ri chicken lines. Methods: The Ri chickens Mx(A)/BF2(B21) were chosen as resistant, and the chickens Mx(G)/BF2(B13) were selected as susceptible by genotyping the Mx and BF2 genes. The tracheal tissues of HPAIV H5N1 infected chickens were collected for RNA sequencing followed by GSEA analysis to define gene subsets to elucidate the sequencing results. Results: We identified four differentially expressed pathways, which were immune-related pathways with a total of 78 genes. The expression levels of cytokines (IL-1β, IL-6, IL-12), chemokines (CCL4 and CCL5), type interferons and their receptors (IFN-β, IFNAR1, IFNAR2, and IFNGR1), Jak-STAT signaling pathway genes (STAT1, STAT2, and JAK1), MHC class I and II and their co-stimulatory molecules (CD80, CD86, CD40, DMB2, BLB2, and B2M), and interferon stimulated genes (EIF2AK2 and EIF2AK1) in resistant chickens were higher than those in susceptible chickens. Conclusions: Resistant Ri chickens exhibit a stronger antiviral response to HPAIV H5N1 compared with susceptible chickens. Our findings provide insights into the immune responses of genetically disparate chickens against HPAIV.