• Title/Summary/Keyword: Gene testing

Search Result 309, Processing Time 0.031 seconds

A rare, likely pathogenic GCK variant related to maturity-onset diabetes of the young type 2: A case report

  • So, Min-Kyung;Huh, Jungwon;Kim, Hae Soon
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.132-136
    • /
    • 2021
  • Maturity-onset diabetes of the young (MODY) is caused by autosomal dominant pathogenic variants in one of 14 currently known monogenic genes. Characteristics of patients with MODY include early-onset clinical disease with a family history of diabetes and negative autoantibodies and may present with heterogeneous phenotypes according to the different subtypes. Here, we report a patient with early-onset diabetes who presented asymptomatic mild fasting hyperglycemia with the absence of autoantibodies. She was diagnosed with glucokinase (GCK)-MODY caused by a GCK variant, c.1289T>C (p.L430P), identified by targeted gene-panel testing, and the affected father had the same variant. We interpreted this rare missense variant as a likely pathogenic variant and then she stopped taking oral medication. This case highlights the usefulness of gene-panel testing for accurate diagnosis and appropriate management of MODY. We also note the importance of familial genetic testing and genetic counseling for the proper interpretation of MODY variants.

Efficient Strategy to Identify Gene-Gene Interactions and Its Application to Type 2 Diabetes

  • Li, Donghe;Wo, Sungho
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.160-165
    • /
    • 2016
  • Over the past decade, the detection of gene-gene interactions has become more and more popular in the field of genome-wide association studies (GWASs). The goal of the GWAS is to identify genetic susceptibility to complex diseases by assaying and analyzing hundreds of thousands of single-nucleotide polymorphisms. However, such tests are computationally demanding and methodologically challenging. Recently, a simple but powerful method, named "BOolean Operation-based Screening and Testing" (BOOST), was proposed for genome-wide gene-gene interaction analyses. BOOST was designed with a Boolean representation of genotype data and is approximately equivalent to the log-linear model. It is extremely fast, and genome-wide gene-gene interaction analyses can be completed within a few hours. However, BOOST can not adjust for covariate effects, and its type-1 error control is not correct. Thus, we considered two-step approaches for gene-gene interaction analyses. First, we selected gene-gene interactions with BOOST and applied logistic regression with covariate adjustments to select gene-gene interactions. We applied the two-step approach to type 2 diabetes (T2D) in the Korea Association Resource (KARE) cohort and identified some promising pairs of single-nucleotide polymorphisms associated with T2D.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

The Correlation between E-Selectin S128R Gene Polymorphism and Ischemic Stroke in Chinese Population : A Meta-Analysis

  • Yang, Xitong;Ma, Rong;Zhang, Yuanyuan;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.5
    • /
    • pp.550-558
    • /
    • 2020
  • To perform a systematic review of the data collected from case-control studies conducted earlier to investigate the correlation between E-selectin S128R polymorphism and ischemic stroke (IS) risk among the Chinese population. The PubMed, Web of Science, Chinese biomedical literature database (CBM), Chinese databases China National Knowledge Infrastructure (CNKI), WanfangData knowledge service platform (Wanfang Data), and information resource integration service platform (VIP) Databases were searched to retrieve case-control studies on the correlation between E-selectin gene S128R polymorphism and IS from the inception of the database till June 2019. The literature was screened, data were extracted, the risk of bias was reviewed, and the studies included were assessed independently by two reviewers. Stata ver. 12.0 software (Stata Corp LLC, College Station, TX, USA) was used to perform the meta-analysis. A total of 2907 cases from eight case-control studies involving 1478 IS patients and 1429 controls were included in this study. The R allele and RS genotype in E-selectin were found to be associated with the risk of IS as per the results of the meta-analysis (R vs. S : odds ratio [OR], 2.75; 95% confidence interval [CI], 2.15-3.51; p<0.00001; RS vs. SS : OR, 2.50; 95% CI, 1.95-3.19; p<0.00001; RR+RS vs. SS : OR, 2.85, 95% CI, 2.21-3.67; p<0.00001). The E-selectin gene S128R polymorphism is likely related to IS based on the results of a meta-analysis in the Chinese population, and the R allele and RS genotype of E-selectin may be IS risk factors.

Genetic testing in clinical pediatric practice

  • Yoo, Han Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.273-285
    • /
    • 2010
  • Completion of the human genome project has allowed a deeper understanding of molecular pathophysiology and has provided invaluable genomic information for the diagnosis of genetic disorders. Advent of new technologies has lead to an explosion in genetic testing. However, this overwhelming stream of genetic information often misleads physicians and patients into a misguided faith in the power of genetic testing. Moreover, genetic testing raises a number of ethical, legal, and social issues. Diagnostic genetic tests can be divided into three primary but overlapping categories: cytogenetic studies (including routine karyotyping, high-resolution karyotyping, and fluorescent in situ hybridization studies), biochemical tests, and DNA-based diagnostic tests. DNA-based testing has grown rapidly over the past decade and includes preandpostnatal testing for the diagnosis of genetic diseases, testing for carriers of genetic diseases, genetic testing for susceptibility to common non-genetic diseases, and screening for common genetic diseases in a particular population. Theoretically, once a gene's structure, function, and association with a disease are well established, the clinical application of genetic testing should be feasible. However, for routine applications in a clinical setting, such tests must satisfy a number of criteria. These criteria include an acceptable degree of clinical and analytical validity, support of a quality assurance program, possibility of modifying the course of the diagnosed disease with treatment, inclusion of pre-and postnatal genetic counseling, and determination of whether the proposed test satisfies cost-benefit criteria and should replace or complement traditional tests. In the near future, the application of genetic testing to common diseases is expected to expand and will likely be extended to include individual pharmacogenetic assessments.

Molecular Genetic Testing and Diagnosis of Wilson Disease (윌슨병의 진단과 분자유전학적 검사)

  • Seo, Jeong Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.11 no.sup1
    • /
    • pp.72-82
    • /
    • 2008
  • Wilson disease (WD) is an autosomal recessive disorder of copper metabolism that results in accumulation of copper primarily in the liver, the brain and the cornea. Mutations in the WD gene, ATP7B cause failure of copper excretion from hepatocyte into bile and a defective synthesis of ceruloplasmin. More than 370 mutations are now recognized, scattering throughout the ATP7B gene. Since WD has protean clinical presentations, awareness of WD in clinical practice is important for the early diagnosis and prevention of accumulated copper toxicity. None of the laboratory parameters alone allows a definite diagnosis of WD. There are numerous pitfalls in the diagnosis of WD. Low serum ceruloplasmin concentrations, increased 24 hour urinary copper excretion, increased hepatic copper concentrations and the presence of Kayser-Fleischer rings in the cornea are major diagnostic points. A combination of any two of these 4 laboratory findings is strong support for a diagnosis of WD. Molecular methods are now being used to aid diagnosis. Molecular genetic testing has confirmed the diagnosis in individuals in whom the diagnosis is not clearly established biochemically and clinically. Siblings should be screened for WD once an index case has been diagnosed. Discrimination of heterozygotes from asymptomatic patients is essential to avoid inappropriate lifelong therapy for heterozygotes. Genetic testing, either by haplotype analysis or by mutation analysis, is the only reliable tool for differentiating heterozygote carriers from affected asymptomatic patients. Currently, genetic testing is of limited value in the primary diagnosis. However, genetic testing will soon play an essential role in diagnosing WD as rapid advancement of biomedical technology will allow more rapid, easier and less expensive mutation detection.

  • PDF

Genetic counseling in Korean health care system (유전상담의 제도적인 고찰)

  • Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Unprecedented amount of genetic information being generated from the result of Human Genome Project (HGP) and advances in genetic research is already forcing changes in the paradigm of health and disease. The ultimate goal of genetic medicine is to use genetic information and technology to develop new ways of treatment or even prevention of the disease on an individual level for 'personalized medicine'. Genetics is play ing an increasingly important role in the diagnosis, monitoring and management of common multifactorial diseases in addition to rare single-gene disorders. While wide range of genetic testing have provided benefits to patients and family, uncertainties surrounding test interpretation, the current lack of available medical options for the diseases, and risks for discrimination and social stigmatization may remain to be resolved. However an increasing number of genetic tests are becoming commercially available, including direct to consumer genetic testing, yet public is often unaw are of their clinical and social implications. The personal nature of information generated by a genetic test, its power to affect major life decisions and family members, and its potential misuse raise important ethical considerations. Therefore appropriate genetic counseling is needed for patient to be informed with the benefits, limitations and risks of genetic tests, prior to informed consent for the tests. Physician also should be familiar with the legal and ethical issues involved in genetic testing to tell patients how w ell a particular genetic risk factor relates with likelihood of disease, and be able to provide appropriate genetic counseling. Genetic counseling become a mandatory requirement as global standard for many genetic testing such as prenatal diagnosis, presymtomatic DNA diagnostic tests and cancer susceptibility gene test for familial cancer syndrome. In oder to meet the challenge of genetic medicine of 21 century in korean health care system, professional education program and certification board for medical genetics specialist including non-MD genetic counselors should be addressed by medical society and regulatory policy of national health insurance reimbursement for genetic counseling to be in place to promote the implementation of clinical genetic service including genetic counseling for proper genetic testing.

  • PDF

Statistical Tests for Time Course Microarray Experiments

  • Park, Tae-Seong;Lee, Seong-Gon;Choe, Ho-Sik;Lee, Seung-Yeon;Lee, Yong-Seong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.85-90
    • /
    • 2002
  • Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. In time-course experiments in which gene expression is monitored over time we are interested in testing gene expression profiles for different experimental groups. We propose a statistical test based on the ANOVA model to identify genes that have different gene expression profiles among experimental groups in time-course experiments. Using this test, we can detect genes that have different gene expression profiles among experimental groups. The proposed model is illustrated using cDNA microarrays of 3,840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.

  • PDF

Predicting of compressive strength of recycled aggregate concrete by genetic programming

  • Abdollahzadeh, Gholamreza;Jahani, Ehsan;Kashir, Zahra
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.155-163
    • /
    • 2016
  • This paper, proposes 20 models for predicting compressive strength of recycled aggregate concrete (RAC) containing silica fume by using gene expression programming (GEP). To construct the models, experimental data of 228 specimens produced from 61 different mixtures were collected from the literature. 80% of data sets were used in the training phase and the remained 20% in testing phase. Input variables were arranged in a format of seven input parameters including age of the specimen, cement content, water content, natural aggregates content, recycled aggregates content, silica fume content and amount of superplasticizer. The training and testing showed the models have good conformity with experimental results for predicting the compressive strength of recycled aggregate concrete containing silica fume.