• Title/Summary/Keyword: Gene survival

Search Result 717, Processing Time 0.025 seconds

Effect of Resveratrol on the Induction of Cdk Inhibitor p21 and Pro-apoptotic Bax Expression by amyloid-β in Astroglioma C6 Cells (신경교 세포에서 resveratrol이 amyloid-β에 의해 유도되는 Cdk inhibitor p21 및 Bax 발현의 감소 효과)

  • Kim Young Ae;Lim Sun-Young;Ko Woo Shin;Choi Byung Tae;Lee Yong Tae;Rhee Sook-Hee;Park Kun-Young;Lee Won-Ho;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.169-175
    • /
    • 2005
  • Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin found in grape skins, peanuts, and red wine, has been reported to have a wide range of biological and pharmacological properties. $Amyloid-\beta$ deposition and senile plaque-associated astrocytes are common neuropathological features of Alzheimer's disease. In this study, we have explored the effects of resveratrol on $amyloid-\beta-peptide-mediated$ cytotoxicity in vitro and modulation of cell growth-regulatory gene products in astroglioma C6 cells to elucidate its possible mechanism for anti-cytotoxicity. Exposure of C6 cells to $Amyloid-\beta$ resulted in dose-dependent growth inhibition and morphological changes of C6 cells, which were recovered by pre-treatment with resveratrol. The anti-proliferative effect of $amyloid-\beta$ was associated with the induction of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAF1/CIP1) expression assessed by RT-PCR and Western blot analysis in time-dependent manner in C6 cells. In addition, the pro-apoptotic Bax expression was also up-regulated in $amyloid-\beta-treated$ C6 cells without alteration of anti-apoptotic Bcl-2 and $Bcl-X_L$ expression. However, pre-treatment of resveratrol significantly inhibited $amyloid-\beta-induced$ p53, p21 and Bax levels, suggesting that the modulation of p53, p21 and Bax levels could be one of the possible pathways by which resveratrol functions as anti-cytotoxic agent. Our results demonstrate that resveratrol may enhance the protection against $amyloid-\beta-induced$ cytotoxicity by promoting the survival of glial cells.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

Comparison of Production Performance and Stress Response of White Leghorns Kept in Conventional Cages and Floor Pens (백색레그혼 종에 있어 케이지 사육과 평사 사육 간의 생산능력과 스트레스 반응 정도 비교)

  • Choi, Eun Sik;Cho, Eun Jung;Jeong, Hyeon Cheol;Kim, Bo Kyung;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.47 no.3
    • /
    • pp.189-197
    • /
    • 2020
  • This study was conducted to compare the production performance and stress response of chickens kept in the conventional cages and floor pens. 491 female White Leghorns were used in this study, and their production characteristics and stress response indicators were analyzed from 34 to 43 weeks of age. The results showed that there was no significant difference in survival rate, hen-day egg production, and body weight between the chickens kept in the conventional cages and those kept in the floor pens. The chickens kept in the conventional cages had a significantly higher egg weight and egg quality compared with those kept in the floor pens (P<0.01). The amount of telomeric DNA in lymphocytes was significantly higher in the chickens kept in floor pens than in those kept in conventional cages (P<0.05). The heterophil-lymphocyte ratio, HSP-90β gene expression level, and DNA damage rate significantly increased in chickens kept in the conventional cages, as compared to the chickens kept in floor pens (P<0.01). In conclusion, there seems to be no difference in the production performance between chickens kept in conventional cages and those kept in floor pens. Furthermore, chickens kept in conventional cages had higher stress response values than those kept in floor pens for all stress response indicators. Therefore, conventional cage types are considered to be a more stressful environment for chickens than floor pens, regardless of the production performance of the chickens.

Hsp70 and IKKγ Synergistically Suppress the Activation of NF-κB (Hsp70와 IKKγ에 의한 NF-κB 활성억제의 상승효과)

  • Kim, Mi Jeong;Kim, Ka Hye;Kim, Moon Jeong;Kim, Jin Ik;Choi, Hye Jung;Moon, Ja Young;Joo, Woo Hong;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.991-998
    • /
    • 2016
  • NF-κB acts as a critical transcription factor for the survival of cells via the induction of antiapoptotic genes. Constitutive activation of NF-κB in many types of solid tumors suggests that the inhibition of NF-κB might prevent or inhibit tumorigenesis. Although a number of studies demonstrated that Hsp70 regulated NF-κB activity, the exact mechanism is not clear. This study investigated the functional relationship of Hsp70 and IKKγ in the regulation of NF-κB activation using expression plasmids of components of the IKK complex. Wild-type and deletion mutants of IKKγ were expressed together with Hsp70, and the combined regulatory effect of Hsp70 and IKKγ on NF-κB activation was assayed. Hsp70 suppressed the activation of NF-κB in a reporter plasmid assay. Hsp70 also suppressed the phosphorylation and degradation of IκBα. The suppressive effect of Hsp70 on NF-κB activation was synergistically elevated by IKKγ. The N-terminal IKKβ binding site, C-terminal leucine zipper, and zinc finger domains of IKKγ were not necessary for the suppressive effect. Furthermore, Hsp70 and IKKγ synergistically suppressed the induction of COX-2 expression by lipopolysaccharides in RAW264.7 cells. These results suggest that overexpression of Hsp70 and IKKγ may be a strategic method for inhibition of NF-κB and related diseases.

Characterization of Physiological Properties in Vibrio fluvialis by the Deletion of Oligopeptide Permease (oppA) Gene (Vibrio fluvialis oligopeptide permease (oppA) 유전자 deletion에 의한 생리적 특성)

  • Ahn Sun Hee;Lee Eun Mi;Kim Dong Gyun;Hong Gyoung Eun;Park Eun Mi;Kong In Soo
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.131-135
    • /
    • 2006
  • Oligopeptide is known to be an essential nitrogen nutrient for bacterial growth. Oligopeptide can be transported into cytoplasm by a specific transport system, Opp system. Opp system is composed of five proteins, which are transcribed by an operon. These are responsible for oligopeptide binding protein (OppA), permease (OppB and OppC) and energy generation system (OppD and OppF), respectively. Previously, we isolated the opp operon from Vibrio fluvialis and constructed the oppA mutant by allelic exchange method. In this study, we investigated the growth pattern and biofilm production under the different growth condition. When the cells were cultivated using brain heart infusion(BHI) medium, the wild type was faster than the mutant in growth during the exponential phase. However, it showed that the growth pattern of two strains in M9 medium is very similar. The growth of wild type showed better than that of the mutant grown at pH 8. At pH 7, there was no an obvious difference in growth. After 5 mM $H_2O_2$ was treated to the cells $(OD_{600}=1.2)$, the cell survival was examined. The oppA mutation did not affect in survivability. In the presence of $10{\mu}g/ml$ polymyxin B, the biofilm production of the oppA mutant was higher than that of the wild type.

Detection of Auxotrophic Mutants form Valsa ceratosperma, the Causal Fungus of Apple Canker (사과나무 부란병균(腐爛病菌) Valsa ceratosperma에서의 Auxotrophic Mutants의 검출(檢出))

  • Hong, Yeon Gyu;Uhm, Jae Youl
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.119-126
    • /
    • 1987
  • This study was conducted to elucidate the most appropriate method to obtain auxotrophic mutants from Valsa ceratosperma, the causal fungus of apple canker, which may be used as a gene marker in detecting the transfer of the factors of avirulent strains to virulent strains. Among the 3 kinds of synthetic media tested, each have two formula for minimal and complete, the medium which has been used in study of Endothia parasitica (E. P medium) was turned out to be most appropriate for the growth of V. ceratosperma. A medium for single colony formation from pycnidiospore of this fungus was developed by adding 0.5% L - sorbose to the E. P minimal medium. The period of incubation in dark for preventing the photoreactivation after U. V irradiation was estimated as about 60hrs at which most of the spores become binucleate. Largest number of putative auxotrophs were obtained at about 50second of irradiation to the spores smeared on the medium for single colony formation, at which the survival rate of spores was 5 to 6 percent. With these method developed in this experiment, 161 isolates of putative auxotrophs were detected among which the nutrient requirement for 10 isolates were determined. Five out of 10 mutants were still virulent to apple tree and all but one could not sporulate.

  • PDF

Alteration of MicroRNAs Targeted Integrins by PD-MSCs Transplantation Is Involved in Hepatic Regeneration in a Rat Model with BDL (담관결찰 쥐 모델에서 태반유래중간엽줄기세포 이식에 의한 miRNA 표적 인테그린 변화의 간재생 효과)

  • Park, Sohae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.710-718
    • /
    • 2021
  • Placenta-derived mesenchymal stem cells (PD-MSCs) are promising candidates for cell-based therapy in regenerative medicine. The migration and homing potential of PD-MSCs to injured sites is a critical property of MSC engraftment. MicroRNAs (miRNAs) have recently been shown to regulate the critical functions of MSCs, such as proliferation, survival, and migration. The objective of the present study was to identify the miRNA and target genes involved in PD-MSCs homing in a bile duct ligation (BDL) rat model. We selected candidate miRNAs targeting genes for PD-MSCs homing based on microarray analysis. PD-MSC engraftment in BDL-injured rat liver was identified by immunofluorescence assay and human-specific Alu gene expression by quantitative real-time polymerase chain reaction (qRT-PCR) one week after transplantation. Compared with migrated naïve PD-MSCs under hypoxic and normoxic conditions (Hyp/Nor), the transplanted group with PD-MSCs (Tx) showed distinct differences in miRNA expressions in BDL-injured rat liver. We also validated the miRNAs and their target genes for PD-MSCs homing. The expressions of integrin α4 (ITGA4) and integrin α5 (ITGA5) target genes for miR-199a-5p and miR-148a-3p were significantly upregulated in the Tx group (p<0.05). In addition, integrin β1 (ITGB1) and integrin β8 (ITGB8) were upregulated by suppressing miR-183-5p and miR-145-5p, respectively. These results demonstrated that PD-MSCs regulate miRNA expression related to the integrin family for their homing effects on the BDL-injured rat liver. The findings further suggest that miRNA-mediated regulation of the integrin family contributes to the therapeutic efficacy of PD-MSCs in the rat hepatic fibrosis model by BDL.