• Title/Summary/Keyword: Gene network

Search Result 561, Processing Time 0.043 seconds

In-silico inferences for expression data using IGAM: Applied to Fuzzy-Clustering & Regulatory Network Modeling (연판 지식을 이용한 유전자 발현 데이터 분석: 퍼지 플러스링과 조절 네트웍 모델링에의 응용)

  • Lee, Philhyone;Hojeong Nam;Lee, Doheon;Lee, Kwang H.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.273-276
    • /
    • 2004
  • Genome-scale expression data provides us with valuable insights about organisms, but the biological validation of in-silico analysis is difficult and often controversial. Here we present a new approach for integrating previously established knowledge with computational analysis. Based on the known biological evidences, IGAM (Integrated Gene Association Matrix) automatically estimates the relatedness between a pair of genes. We combined this association knowledge to the regulatory network modeling and fuzzy clustering in yeast 5. Cerevisiae. The result was found to be more effective for extracting biological meanings from in-silico inferences for gene expression data.

  • PDF

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules (빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축)

  • Lee, Heon-Gyu;Ryu, Keun-Ho;Joung, Doo-Young
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.9-20
    • /
    • 2007
  • Groups of genes control the functioning of a cell by complex interactions. Such interactions of gene groups are tailed Gene Regulatory Networks(GRNs). Two previous data mining approaches, clustering and classification, have been used to analyze gene expression data. Though these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rules. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and gene expression patterns we detected by applying the FP-growth algorithm. Next, we construct a gene regulatory network from frequent gene patterns using chain rules. Finally, we validate our proposed method through our experimental results, which are consistent with published results.

Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle

  • Lim, Dajeong;Lee, Seung-Hwan;Kim, Nam-Kuk;Cho, Yong-Min;Chai, Han-Ha;Seong, Hwan-Hoo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • Marbling (intramuscular fat) is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the 'marbling score' trait and systemically analyzed the network topology in Hanwoo (Korean cattle). As a result, we determined 3 modules (gene groups) that showed statistically significant results for marbling score. In particular, one module (denoted as red) has a statistically significant result for marbling score (p = 0.008) and intramuscular fat (p = 0.02) and water capacity (p = 0.006). From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA) have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.

A Study on the Design of a Biologizing Control System

  • Park, Byung-Jae;Wang, Paul P.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.630-634
    • /
    • 2004
  • According to the progress of an information-oriented society, more human friendly systems are required. The systems can be implemented by a kind of intelligent algorithms. In this paper we propose the possibility of the implementation of an intelligent algorithm from gene, behavior of human beings, which has some properties such as self organization and self regulation. The regulation of gene behavior is widely analyzed by Boolean network. Also the SORE (Self Organizable and Regulating Engine) is one of those algorithms. This paper does not report detailed research results; rather, it studies the feasibility of gene behavior in biocontrol systems based upon computer simulations.

Feasibility study of deep learning based radiosensitivity prediction model of National Cancer Institute-60 cell lines using gene expression

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1439-1448
    • /
    • 2022
  • Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expression using deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquired from the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2) from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity prediction model was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied to train and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using the large-errored samples as a validation set, to determine whether the error was from the high bias of the folded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relative error<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the folded CV. Through an additional LOOCV, one more sample was correctly predicted, representing a prediction accuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172 correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity prediction using gene expression.

Inferring Undiscovered Public Knowledge by Using Text Mining Analysis and Main Path Analysis: The Case of the Gene-Protein 'brings_about' Chains of Pancreatic Cancer (텍스트마이닝과 주경로 분석을 이용한 미발견 공공 지식 추론 - 췌장암 유전자-단백질 유발사슬의 경우 -)

  • Ahn, Hyerim;Song, Min;Heo, Go Eun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.26 no.1
    • /
    • pp.217-231
    • /
    • 2015
  • This study aims to infer the gene-protein 'brings_about' chains of pancreatic cancer which were referred to in the pancreatic cancer related researches by constructing the gene-protein interaction network of pancreatic cancer. The chains can help us uncover publicly unknown knowledge that would develop as empirical studies for investigating the cause of pancreatic cancer. In this study, we applied a novel approach that grafts text mining and the main path analysis into Swanson's ABC model for expanding intermediate concepts to multi-levels and extracting the most significant path. We carried out text mining analysis on the full texts of the pancreatic cancer research papers published during the last ten-year period and extracted the gene-protein entities and relations. The 'brings_about' network was established with bio relations represented by bio verbs. We also applied main path analysis to the network. We found the main direct 'brings_about' path of pancreatic cancer which includes 14 nodes and 13 arcs. 9 arcs were confirmed as the actual relations emerged on the related researches while the other 4 arcs were arisen in the network transformation process for main path analysis. We believe that our approach to combining text mining analysis with main path analysis can be a useful tool for inferring undiscovered knowledge in the situation where either a starting or an ending point is unknown.

Suppression of UDP-glycosyltransferase-coding Arabidopsis thaliana UGT74E2 Gene Expression Leads to Increased Resistance to Psuedomonas syringae pv. tomato DC3000 Infection

  • Park, Hyo-Jun;Kwon, Chang-Seob;Woo, Joo-Yong;Lee, Gil-Je;Kim, Young-Jin;Paek, Kyung-Hee
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.170-182
    • /
    • 2011
  • Plants possess multiple resistance mechanisms that protect themselves against pathogen attack. To identify unknown components of the defense machinery in Arabidopsis, gene-expression changes were monitored in Arabidopsis thaliana under 18 different biotic or abiotic conditions using a DNA microarray representing approximately 25% of all Arabidopsis thaliana genes (www.genevestigator.com). Seventeen genes which are early responsive to salicylic acid (SA) treatment as well as pathogen infection were selected and their T-DNA insertion mutants were obtained from SALK institute. To elucidate the role of each gene in defense response, bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 was inoculated onto individual T-DNA insertion mutants. Four mutants exhibited decreased resistance and five mutants displayed significantly enhanced resistance against Pst DC3000-infection as measured by change in symptom development as compared to wild-type plants. Among them, member of uridin diphosphate (UDP)-glycosyltransferase (UGT) was of particular interest, since a UGT mutant (At1g05680) showed enhanced resistance to Pst-infection in Arabidopsis. In systemic acquired resistance (SAR) assay, this mutant showed enhanced activation of SAR. Also, the enhanced SAR correlated with increased expression of defense-related gene, AtPR1. These results emphasize that the glycosylation of UGT74E2 is a part of the SA-mediated disease-resistance mechanism.

Creating Subnetworks from Transcriptomic Data on Central Nervous System Diseases Informed by a Massive Transcriptomic Network

  • Feng, Yaping;Syrkin-Nikolau, Judith A.;Wurtele, Eve S.
    • Interdisciplinary Bio Central
    • /
    • v.5 no.1
    • /
    • pp.1.1-1.8
    • /
    • 2013
  • High quality publicly-available transcriptomic data representing relationships in gene expression across a diverse set of biological conditions is used as a context network to explore transcriptomics of the CNS. The context network, 18367Hu-matrix, contains pairwise Pearson correlations for 22,215 human genes across18,637 human tissue samples1. To do this, we compute a network derived from biological samples from CNS cells and tissues, calculate clusters of co-expressed genes from this network, and compare the significance of these to clusters derived from the larger 18367Hu-matrix network. Sorting and visualization uses the publicly available software, MetaOmGraph (http://www.metnetdb.org/MetNet_MetaOm-Graph.htm). This identifies genes that characterize particular disease conditions. Specifically, differences in gene expression within and between two designations of glial cancer, astrocytoma and glioblastoma, are evaluated in the context of the broader network. Such gene groups, which we term outlier-networks, tease out abnormally expressed genes and the samples in which this expression occurs. This approach distinguishes 48 subnetworks of outlier genes associated with astrocytoma and glioblastoma. As a case study, we investigate the relationships among the genes of a small astrocytoma-only subnetwork. This astrocytoma-only subnetwork consists of SVEP1, IGF1, CHRNA3, and SPAG6. All of these genes are highly coexpressed in a single sample of anaplastic astrocytoma tumor (grade III) and a sample of juvenile pilocytic astrocytoma. Three of these genes are also associated with nicotine. This data lead us to formulate a testable hypothesis that this astrocytoma outlier-network provides a link between some gliomas/astrocytomas and nicotine.