• 제목/요약/키워드: Gene mutation

검색결과 1,308건 처리시간 0.033초

A Novel Heterozygous Mutation (F252Y) in Exon 7 of the IRF6 Gene is Associated with Oral Squamous Cell Carcinomas

  • Melath, Anil;Santhakumar, Gopi Krishnan;Madhavannair, Shyam Sunder;Nedumgottil, Binoy Mathews;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6803-6806
    • /
    • 2013
  • Background: Interferon regulatory factor 6 (IRF6) is a transcription factor with distinct and conserved DNA and protein binding domains. Mutations within the protein binding domain have been significantly observed in subjects with orofacial cleft relative to healthy controls. In addition, recent studies have identified loss of expression of IRF6 due to promoter hypermethylation in cutaneous squamous cell carcinomas. Since mutational events occurring within the conserved domains are likely to affect the function of a protein, we investigated whether regions within the IRF6 gene that encodes for the conserved protein binding domain carried mutations in oral squamous cell carcinoma (OSCC). Materials and Methods: Total chromosomal DNA extracted from 32 post surgical OSCC tissue samples were amplified using intronic primers flanking the exon 7 of IRF6 gene, which encodes for the major region of protein binding domain. The PCR amplicons from all the samples were subsequently resolved in a 1.2% agarose gel, purified and subjected to direct sequencing to screen for mutations. Results: Sequencing analysis resulted in the identification of a mutation within exon 7 of IRF6 that occurred in heterozygous condition in 9% (3/32) of OSCC samples. The wild type codon TTC at position 252 coding for phenylalanine was found to be mutated to TAC that coded for tyrosine (F252Y). Conclusions: The present study identified for the first time a novel mutation within the conserved protein binding domain of IRF6 gene in tissue samples of subjects with OSCC.

Fluorometric Detection of Low-Abundance EGFR Exon 19 Deletion Mutation Using Tandem Gene Amplification

  • Kim, Dong-Min;Zhang, Shichen;Kim, Minhee;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.662-667
    • /
    • 2020
  • Epidermal growth factor receptor (EGFR) mutations are not only genetic markers for diagnosis but also biomarkers of clinical-response against tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC). Among the EGFR mutations, the in-frame deletion mutation in EGFR exon 19 kinase domain (EGFR exon 19-del) is the most frequent mutation, accounting for about 45% of EGFR mutations in NSCLCs. Development of sensitive method for detecting the EGFR mutation is highly required to make a better screening for drug-response in the treatment of NSCLC patients. Here, we developed a fluorometric tandem gene amplification assay for sensitive detection of low-abundance EGFR exon 19-del mutant genomic DNA. The method consists of pre-amplification with PCR, thermal cycling of ligation by Taq ligase, and subsequent rolling circle amplification (RCA). PCR-amplified DNA from genomic DNA samples was used as splint DNA to conjugate both ends of linear padlock DNA, generating circular padlock DNA template for RCA. Long stretches of ssDNA harboring multiple copies of G-quadruplex structure was generated in RCA and detected by thioflavin T (ThT) fluorescence, which is specifically intercalated into the G-quadruplex, emitting strong fluorescence. Sensitivity of tandem gene amplification assay for detection of the EGFR exon 19-del from gDNA was as low as 3.6 pg, and mutant gDNA present in the pooled normal plasma was readily detected as low as 1% fraction. Hence, fluorometric detection of low-abundance EGFR exon 19 deletion mutation using tandem gene amplification may be applicable to clinical diagnosis of NSCLC patients with appropriate TKI treatment.

Insight into Norfloxacin Resistance of Acinetobacter oleivorans DR1: Target Gene Mutation, Persister, and RNA-Seq Analyses

  • Kim, Jisun;Noh, Jaemin;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1293-1303
    • /
    • 2013
  • Antibiotic resistance of soilborne Acinetobacter species has been poorly explored. In this study, norfloxacin resistance of a soil bacterium, Acinetobacter oleivorans DR1, was investigated. The frequencies of mutant appearance of all tested non-pathogenic Acinetobacter strains were lower than those of pathogenic strains under minimum inhibitory concentration (MIC). When the quinolone-resistance-determining region of the gyrA gene was examined, only one mutant (His78Asn) out of 10 resistant variants had a mutation. Whole transcriptome analysis using a RNA-Seq demonstrated that genes involved in SOS response and DNA repair were significantly up-regulated by norfloxacin. Determining the MICs of survival cells after norfloxacin treatment confirmed some of those cells were indeed persister cells. Ten colonies, randomly selected from among those that survived in the presence of norfloxacin, did not exhibit increased MIC. Thus, both the low mutation frequency of the target gene and SOS response under norfloxacin suggested that persister formation might contribute to the resistance of DR1 against norfloxacin. The persister frequency increased without a change in MIC when stationary phase cells, low growth rates conditions, and growth-deficient dnaJ mutant were used. Taken together, our comprehensive approach, which included mutational analysis of the target gene, persister formation assays, and RNA sequencing, indicated that DR1 survival when exposed to norfloxacin is related not only to target gene mutation but also to persister formation, possibly through up-regulation of the SOS response and DNA repair genes.

Genotype Distribution of the Mutations in the Coagulation Factor V Gene in the Korean Population: Absence of Its Association with Coronary Artery Disease

  • Hong, Seung-Ho
    • Animal cells and systems
    • /
    • 제7권3호
    • /
    • pp.255-259
    • /
    • 2003
  • Mutations in the factor Ⅴ gene are major risk markers for venous thrombosis. Several factors for blood coagulation have been related with cardiovascular disease. Ⅰ investigated genotype distribution for three mutations (G1691 A, A2379G and G2391 A) of the factor Ⅴ gene in the Korean population. Genotype frequencies were examined by polymerase chain reaction in 135 patients with coronary artery disease (CAD) and 116 healthy subjects. For the G1691A mutation (factor Ⅴ

Epidermal Growth Factor Receptor Gene Polymorphisms and Gastric Cancer in Iran

  • Abediankenari, Saeid;Jeivad, Fereshteh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3187-3190
    • /
    • 2013
  • Background: Epidermal growth factor receptor (EGFR) is a transmembrane receptor which contributes to many processes involved in cell survival, proliferation and inhibits apoptosis, that may lead to cancer development. Gastric cancer is one of the most common diseases of digestive system that has low 5-year-survival. The aim of this research was to determine the significance of EGFR tyrosine kinase domain gene polymorphisms in gastric cancer in Iran. Materials and Methods: In the present study, 83 patients with gastric cancer and 40 normal subjects were investigated for EGFR gene polymorphisms in exons 18-21 by PCR-SSCP. Then, DNA sequencing was conducted for different mobility shift bands. Finally the data were statistically analyzed using the chi-2 test and the SPSSver.16 program. Results: Exon 18 of EGFR gene showed three different bands in SSCP pattern and DNA sequencing displayed one mutation. SSCP pattern of Exons 19 and 21 did not show different migration bands. Exon 20 of EGFR gene revealed multiple migrate bands in SSCP pattern. DNA sequencing displayed 2 mutations in this exon: one mutation was caused amino acid change and another mutation was silent. Conclusion: It may be that EGFR tyrosine kinase gene polymorphisms differ between populations and screening could be useful in gastric cancer patients who might benefit from tyrosine kinase inhibitor therapy.

A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder

  • Komachali, Sajad Rafiee;Sheikholeslami, Mozhgan;Salehi, Mansoor
    • Genomics & Informatics
    • /
    • 제20권2호
    • /
    • pp.24.1-24.8
    • /
    • 2022
  • Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.

Mutation spectrum of NF1 gene in Korean unrelated patients with neurofibromatosis 1: Six novel pathogenic variants

  • Sung Hee Han;Eun Joo Kang;Mina Yang;Suekyeung Kim;Sang Gon Lee;Eun Hee Lee
    • Journal of Genetic Medicine
    • /
    • 제21권1호
    • /
    • pp.22-30
    • /
    • 2024
  • Purpose: Neurofibromatosis 1 (NF1) is one of the most common autosomal dominant diseases caused by heterozygous mutation in the NF1 gene. Mutation detection is complex owing to the large size of the NF1 gene, the presence of a high number of partial pseudogenes, and the great variety of mutations. We aimed to study the mutation spectrum of NF1 gene in Korean patients with NF1. Materials and Methods: We have analyzed total 69 unrelated patients who were clinically diagnosed with NF1. PCR and sequencing of the NF1 gene was performed in all unrelated index patients. Additionally, multiplex ligation-dependent probe amplification (MLPA) test of the NF1 and SPRED1 gene analysis (sequencing and MLPA test) were performed in patients with negative results from NF1 gene sequencing analysis. Results: Fifty-five different variants were identified in 60 individuals, including six novel variants. The mutations included 36 single base substitutions (15 missense and 21 nonsense), eight splicing mutations, 13 small insertion or deletions, and three gross deletions. Most pathogenic variants were unique. The mutations were evenly distributed across exon one through 58 of NF1, and no mutational hot spots were found. When fulfilling the National Institutes of Health criterion for the clinical diagnosis of NF1, the detection rate was 84.1%. Cafe-au-lait macules were observed in all patients with NF1 mutations. There is no clear relationship between specific mutations and clinical features. Conclusion: This study revealed a wide spectrum and genetic basis of patients with NF1 in Korea. Our results aim to contribute genetic management and counseling.

소 성장호르몬 유전자의 Exon 5번에서의 새로운 다형성 연구 (A Missense Mutation in Exon 5 of the Bovine Growth Hormone Gene)

  • 윤두학;김태헌;이경희;박응우;이학교;정일정;홍기창
    • Journal of Animal Science and Technology
    • /
    • 제45권1호
    • /
    • pp.13-22
    • /
    • 2003
  • 성장호르몬 유전자는 하나의 작은 공통 선조 유전자로부터 아주 오랜 기간동안 유전자 중복에 의해 진화되어 온 그룹들 중의 하나이다. 이들에 속하는 유전자들은 동물 종간에 구조적인 상동성과 기능적 공통성 등 유사성이 비교적 높게 나타난다. 이런 연구결과들을 근거로 하여 소 성장호르몬 유전자에서 아미노산을 암호화하는 영역으로부터 새로운 아미노산의 변이(missense mutation)를 검출하였고, 이 변이의 대립유전자 빈도는 소(cattle)의 종(species) 및 품종의 지리적 분포에 따라 일정한 경향 치를 보여 주었다. 한편 변경되어진 아미노산은 Tryptophan으로 이는 생물체에 존재하는 많은 단백질들을 구성하는 아미노산중에서도 그 출현빈도가 가장 낮은 것이다. 또한 검출된 변이는 성장호르몬이 그의 수용체와 강하게 결합하는 부위로서, 성장호르몬의 구조적 변이를 초래하여 수용체와의 결합이 비정상적으로 이루어져, 이후 성장호르몬이 표적세포로의 신호전달과 같은 역할을 제대로 수행치 못하게 되고, 이로 인하여 가축의 표현되어지는 경제형질에 영향을 미칠 것으로 추정된다. 그러므로 이러한 대립유전자를 보유하는 개체는 집단에서 제거하는 방법에 의한 개량이 가능할 것으로 사료된다.

Possibility of breeding super rice cultivars using gene linkage

  • Tran, Dang Xuan;Tran, Dang Khanh;Truong, Thi Tu Anh
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.27-27
    • /
    • 2017
  • The rapid growth of world population, reduction of cultivated areas for crop production, and detrimental effects of pests, diseases, and climate changes have required to breed new rice cultivars with high yield, accepted quality, but strong resistance to abiotic and biotic stresses. However, traditional breeding needs much time to breed a new cultivar, whereas the successful use of molecular breeding is still questionable. We have developed a novel mutation which allow to cross many rice cultivars together with low segregation, that allow to breed a new cultivar in only several cropping. The mechanism has been unknown, but we suggest that gene linkage may play a crucial role, of which the semi dwarf gene might be the center gene for gene linkage occurrence. The phenomenon of this possible gene linkage is contrary to Mendel rules, but it is promising to breed new rice cultivars, of which, the most elite genes in rice might be able to gather in a targeted rice variety.

  • PDF

The Mutation that Makes Escherichia coli Resistant to λ P Gene-mediated Host Lethality Is Located within the DNA Initiator Gene dnaA of the Bacterium

  • Datta, Indrani;Banik-Maiti, Sarbani;Adhikari, Lopa;Sau, Subrata;Das, Niranjan;Mandal, Nitai Chandra
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.89-96
    • /
    • 2005
  • Earlier, we reported that the bacteriophage $\lambda$ P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this $\lambda$ P gene-mediated lethality. In this paper, we show that under the $\lambda$ P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94% linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from $\lambda$ P gene-mediated killing and complements E. coli dnaAts46 at $42^{\circ}C$. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to $\lambda$ P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.