• Title/Summary/Keyword: Gene manipulation

Search Result 126, Processing Time 0.023 seconds

Optimization of recombinant E. coli fermentation through biological manipulation and engineering control

  • Kim, Jeong-Yoon
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.14-26
    • /
    • 1993
  • Optimizing protein production in recombinant E. coli strains involves manipulation of genetic and environmental factors. In designing a production system, attention must be paid to gene expression efficiency, culture conditions and bioreactor configuration. Although not much emphasis was given to the physiology of host strains in this review, an understanding of the relationship between the physiology of host cell growth and the overproduction of a cloned gene protein is of primary importance to the improvement of the recombinant fermentation processes. Sometimes it is desirable to make use of gene fusion systems, e.g. protein A, polypeptide, gutathione-S-transferase, or pneumococcal murein hydrolase fusion, to facilitate protein purification.

  • PDF

Atomic Force Microscopy(AFM) based Single Cell Manipulation and High Efficient Gene Delivery Technology (원자간력 현미경을 이용한 단일세포 조작 및 고효율 유전자 도입기술)

  • Han, Sung-Woong;Nakamura, Chikashi;Miyake, Jun;Kim, Woo-Sik;Kim, Jong-Min;Chang, Sang-Mok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.538-545
    • /
    • 2009
  • The principle and application of a scanning probe microscopy(SPM) are reviewed briefly, and a low-invasive single cell manipulation and a gene delivery technique using an etched atomic force microscopy(AFM) probe tip, which we call a nanoneedle, are explained in detail. The nanoneedle insertion into a cell can be judged by a sudden drop of force in a force-distance curve. The probabilities of nanoneedle insertion into cells were 80~90%, which were higher than those of typical microinjection capillaries. When the diameter of the nanoneedle was smaller than 400 nm, the nanoneedle insertion into a cell over 1 hour had almost no influence on the cell viability. A highly efficient gene delivery and a high ratio of expressed gene per delivered DNA compared the conventional major nonviral gene delivery methods could be achieved using the gene modified nanoneedle.

Development of Simultaneous YAC Manipulation-Amplification (SYMA) system by Chromosome Splitting Technique Harboring Copy Number Amplification System (복제수 증폭시스템과 염색체 분단기술을 이용한 Simultaneous YAC Manipulation-Amplification (SYMA) 시스템의 개발)

  • Kim, Yeon-Hee;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.789-793
    • /
    • 2010
  • Artificial chromosome manipulation and amplification of single-copy yeast artificial chromosome (YAC) are usually required in order to use YACs for applications such as physical mapping and functional analysis in eukaryotes. We designed and implemented a Simultaneous YAC Manipulation-Amplification (SYMA) system that combines the copy number amplification system of YAC with a convenient YAC manipulation system. To achieve the desired split and to amplify a YAC clone-harboring plant chromosome, a pBGTK plasmid containing a conditional centromere and thymidine kinase (TK) gene was constructed as a template to amplify the splitting fragment via PCR. By splitting, new 490-kb and 100-kb split YACs containing the elements for copy number amplification were simultaneously generated from a 590-kb YAC clone. The 100-kb split YAC was then successfully amplified 14.4-fold by adding 3 mg/ml sulfanilamide and $50\;{\mu}g/ml$ methotrexate (S3/M50) as inducing substances.

Targeted Gene Disruption and Functional Complementation of Cytochrome P450 Hydroyxlase Involved in Cyclosporin A Hydroxylation in Sebekia benihana

  • Lee, Mi-Jin;Han, Kyu-Boem;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • A cyclic undecapeptide-family natural product, cyclosporin A (CyA), which is one of the most valuable immunosuppressive drugs, is produced nonribosomally by a multifunctional cyclosporin synthetase enzyme complex in a filamentous fungal strain named Tolypocladium niveum. Previously, structural modifications of cyclosporins such as a regionspecific hydroxylation at the $4^{th}$ N-methyl leucine in a rare actinomycetes called Sebekia benihana were reported to lead to dramatic changes in their bioactive spectra. However, the reason behind this change could not be determined since a system to genetically manipulate S. benihana has not yet been developed. To address this limitation, in this study, we utilized the most commonly practiced gene manipulation techniques including conjugation-based foreign gene transfer-and-expression as well as targeted gene disruption to genetically manipulate S. benihana. Using these optimized genetic manipulation systems, a putative cytochrome P450 hydroxylase (CYP) gene named CYP506, which is involved in CyA hydroxylation in S. benihana, was specifically disrupted and genetically complemented. The S. benihana${\Delta}$CYP506 exhibited a significantly reduced CyA hydroxylation yield as well as considerable yield restoration by functional complementation of the S. benihana CYP506 gene, suggesting that the genetically manipulated S. benihana CYP mutant strains may serve as a more efficient bioconversion host for various valuable metabolites including CyA.

Development of Environmental Stress-Tolerant Plants by Gene Manipulation of Antioxidant Enzymes

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • Oxidative stress is one of the major limiting factor in plant productivity. Reactive oxygens species (ROS) generated during metabolic processes damage cellular functions and consequently lead to disease, senescence and cell death. Plants have evolved an efficient defense system by which the ROS is scavenged by antioxidant enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). Attempts to reduce oxidative damages under the stress conditions have included the manipulation of 갠 scavenging enzymes by gene transfer technology. Increased SOD activities of transgenic plants lead to increased resistance against oxidative stresses derived from methyl viologen (MV), and from photooxidative damage caused by high light and low temperature. Transgenic tobacco plants overexpressing APX showed reduced damage following either MV treatment of photooxidative treatment. Overexpression of glutathion reductase (GR) leads to increase in pool of ascorbate and GSH, known as small antioxidant molecules. These results indicate through overexpression of enzymes involved in ROS-scavenging could maintain or improve the plant productivities under environment stress condition. In this study, the rational approaches to develop stress-tolerant plants by gene manipulation of antioxidant enzymes will be introduced to provide solutions for the global food and environmental problems in the $21^\textrm{st}$ century.

  • PDF

Identification of Gene Locus by the Somatic Cell Hybridization in Chicken (체세포 융합에 의한 닭의 유전인자구명에 관한 연구)

  • 정익정
    • Korean Journal of Poultry Science
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • This experiment was conducted to improve the performance of chickens by the precise separation and analysis of chromosomes which are integrated genetic materials, and by the use of gene manipulation techniques. Following are the main results obtained. 1. When the chromosomes were separated through the leucocyte culture and analyzed by Giemsa banding techniques (especially by the method in which 20 layers of banding patterns could be found in chromosome #1), the normal Patterns of chromosomes #l-9 and sex chromosomes, and the location of constitutive heterochromatin without any gene activities in all chromosomes were discovered. 2. To utilize the primodial germ cells (PGC) as the genetic vector which is one of the most important gene manipulation techniques, PGC's from triploid were transplanted to normal host embryos. Since the donor PGC's(3n) were found in the gonads of growing host embryos gene manipulation in poultry using PGC's, seemed to be possible.

  • PDF

Development of complete Culture System for Quail Embryos and Its Application for Embryo Manipulation

  • Ono, T.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.155-163
    • /
    • 2001
  • Gene and cell transfer technique will serve as a powerful tool for the genetic improvement of the poultry and to yield useful products. For avian transgenesis, Japanese quail may serve as an excellent animal model because of its small body size and fast growth rate. Recent progress was described on the manipulation of quail embryos such as the introduction of foreign genes and cells, and the subsequent culturing of the manipulated embryos yielding hatchlings. Intraspecific donor-derived offspring have been available in quail, however, further investigation will be required to obtain interspecific offspring with the aim of rescuing endangered species. Trans genesis will also be useful for improving the profitability and quality of poultry stocks and for developing stocks with novel uses. Considerable progress should soon be made toward the production of transgenic poultry. The key feature of the procedure described here is that embryos are initially taken out from the shell for ease of manipulation and then placed back in culture in addition to various operations midway during culture.

  • PDF

Genetic Manipulation and Transformation Methods for Aspergillus spp.

  • Son, Ye-Eun;Park, Hee-Soo
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.95-104
    • /
    • 2021
  • Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.

Current Progress in Generation of Genetically Modified Mice (유전자 조작 마우스 개발의 최신 연구 동향)

  • Song, Ki-Duk;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.587-592
    • /
    • 2007
  • Manipulation of the mouse genome by activating or inactivating the gene has contributed to the understanding of the function of the gene in the subset of cells during embryonic development or postnatal period of life. Most of all, gene targeting, which largely depends on the availability of mouse embryonic stem (ES) cells, is the milestone of development of animal models for human disease. Recombinase-mediated genome modification (Cre-LoxP and Flp-Frt etc) and the ligand-dependent regulation system, more accurate and elaborate manipulation tools, have been successfully developed and applied to dissect the mechanisms governing complex biological processes and to understand the role of protein in temporal-and spatial aspects of development. As technologies concerning refined manipulation of mouse genome are developed, they are expected to open new opportunities to better understand the diverse in vivo functions of genes.

Effect of in ovo feeding of γ-aminobutyric acid combined with embryonic thermal manipulation on hatchability, growth, and hepatic gene expression in broilers

  • Chris Major, Ncho;Akshat, Goel;Vaishali, Gupta;Chae-Mi, Jeong;Yang-Ho, Choi
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.284-294
    • /
    • 2023
  • Objective: This study investigated the effects of in ovo feeding of γ-aminobutyric acid (GABA) and embryonic thermal manipulation (ETM) on growth performance, organ indices, plasma biochemical parameters, hepatic antioxidant levels, and expression of lipid metabolism-related genes in broilers. Methods: Two hundred and fifty eggs were assigned to one of four treatments: control eggs incubated under standard conditions (CON); eggs that received an in ovo injection of 10% GABA on day 17.5 of incubation (G10); thermally manipulated eggs between days 10 and 18 of incubation at 39.6°C for 6 h daily (TM); and eggs that received both treatments during incubation (G10+TM). After 28 days of rearing, five birds per treatment were selected for blood and organ sampling. Results: No differences were found in hatchability or growth parameters among different treatment groups. Hepatic gene expression of catalase (CAT) and glutathione peroxidase 1 (GPx1) was upregulated (p = 0.046 and p = 0.006, respectively) in the G10+TM group, while that of nuclear factor erythroid 2-related factor 2 (NRF2) was upregulated (p = 0.039) in the G10 group. In addition, the relative gene expression of NADPH oxidase 1 (NOX1) was significantly lower (p = 0.007) in all treatment groups than that in the CON group. Hepatic fatty acid synthase (FAS) levels and average daily feed intake (ADFI) of last week showed a positive correlation (r = 0.50, p = 0.038). In contrast, the relative gene expression of the extracellular fatty acid-binding protein (EXFAB) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were positively correlated (r = 0.48, p = 0.042 and r = 0.50, p = 0.031) with the overall ADFI of birds. Conclusion: Taken together, the results of this study suggest that the combination of in ovo feeding of GABA and ETM can enhance hepatic antioxidant function in broilers.