• 제목/요약/키워드: Gene expression changes

검색결과 1,005건 처리시간 0.033초

Aging and UV Irradiation Related Changes of Gene Expression in Primary Human Keratinocytes

  • Lee, Ok Joo;Lee, Sung-Young;Park, Jae-Bong;Lee, Jae-Yang;Kim, Jong-Il;Kim, Jaebong
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.66-72
    • /
    • 2005
  • The epidermis is a physiological barrier to protect organisms against environment. During the aging process, skin tissues undergo various changes including morphological and functional changes. The transcriptional regulation of genes is part of cellular reaction of aging process. In order to examine the changes of gene expression during the aging process, we used the primary cell culture system of human keratinocytes. Since UV radiation is the most important environmental skin aggressor, causing skin cancer and other problems including premature skin aging, we examined the changes of gene expression in human keratinocytes after UV irradiation using oligonucleotide microarray containing over 10,000 genes. We also compared the gene expression patterns of the senescent and UV treated cells. Expression of the variety of genes related to transcription factors, cell cycle regulation, immune response was altered in human keratinocytes. Some of down-regulated genes are represented in both senescent and UV treated cells. The results may provide a new view of gene expression following UVB exposure and aging process in human keratinocytes.

Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans

  • Park, Jisoo;Choi, Woochan;Dar, Abdul Rouf;Butcher, Rebecca A.;Kim, Kyuhyung
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.28-35
    • /
    • 2019
  • Animals need to be able to alter their developmental and behavioral programs in response to changing environmental conditions. This developmental and behavioral plasticity is mainly mediated by changes in gene expression. The knowledge of the mechanisms by which environmental signals are transduced and integrated to modulate changes in sensory gene expression is limited. Exposure to ascaroside pheromone has been reported to alter the expression of a subset of putative G protein-coupled chemosensory receptor genes in the ASI chemosensory neurons of C. elegans (Kim et al., 2009; Nolan et al., 2002; Peckol et al., 1999). Here we show that ascaroside pheromone reversibly represses expression of the str-3 chemoreceptor gene in the ASI neurons. Repression of str-3 expression can be initiated only at the L1 stage, but expression is restored upon removal of ascarosides at any developmental stage. Pheromone receptors including SRBC-64/66 and SRG-36/37 are required for str-3 repression. Moreover, pheromone-mediated str-3 repression is mediated by FLP-18 neuropeptide signaling via the NPR-1 neuropeptide receptor. These results suggest that environmental signals regulate chemosensory gene expression together with internal neuropeptide signals which, in turn, modulate behavior.

Expression of CyI Cytoplasmic Actin Genes in Sea Urchin Development

  • Hahn, Jang-Hee;Raff, Rudolf A.
    • BMB Reports
    • /
    • 제29권5호
    • /
    • pp.474-480
    • /
    • 1996
  • We present a study of evolutionary changes in expression of actin genes among closely related sea urchin species that exhibit different modes of early development. For this purpose, polyclonal antisera raised against peptides from the carboxyl terminus of the HeCyI cytoskeletal actin of Heliocidaris erythrogramma were used. H. erythrogramma is a direct developing sea urchin that proceeds from embryonic to adult stages without an intervening feeding larval stage. Expression patterns of the CyI actin isoform were compared with those of Heliocidaris tuberculata and to a related sea urchin Strongylocentrotus purpuratus, which both produce a feeding pluteus larval stage. The CyI actin of all three species is expressed in the same cell types. However, its expression patterns have been changed with reorganization of early cell lineage differentiation, which is apparent among the three species. Thus. evolutionary changes in CyI actin gene expression patterns are correlated with not only phylogenetic relationship, but developmental mode. The implication of this observation is that evolutionary changes in expression patterns of histospecific genes may underlie the emergence of novel developmental processes.

  • PDF

Effects of Olanzapine on Gene Expression Changes in MK-801-induced Neurotoxicity Using a High-density DNA Microarray

  • Jo, Jae-Hoon;Kim, Seung-Jun;Yeon, Jong-Pil;Oh, Moon-Ju;Seo, Hye-Myung;Hwang, Seung-Yong;Kim, Sang-Kyum;Kim, Bong-Hee
    • Molecular & Cellular Toxicology
    • /
    • 제3권4호
    • /
    • pp.282-291
    • /
    • 2007
  • Although the etiology of schizophrenia is known to be linked with the disturbance of glutamatergic and dopaminergic neurotransmission, little is known about the relationship between gene expression and the disease process. To identify genes related to abnormalities in glutamatergic and dopaminergic function, we investigated the effects of olanzapine in the changes of mRNA levels in the animal model of schizophrenia, using a high-density DNA microarray. Olanzapine (3.0 mg/kg, i.p.) significantly reduced hyperlocomotive activities, which was induced by MK-801 (1.0 mg/kg, i.p.). We identified that the expression of 719 genes were significantly altered more than two folds in the prefrontal cortex of the rats treated with MK-801. We selected 15 genes out of them by the changes of the expression pattern in the treatment of Olanzapine and/or MK801 for the further confirmation in RT-PCR. The administration of MK-801 increased the expression of 7 genes (NOS3, Hspb1, Hspa1a, CRH, Serpine1, Igfbp6, Snf1lk) and decreased the expression of 1 gene (Aldh1a2), which was attenuated by olanzapine. One gene (Prss12) was up-regulated after olanzapine treatment although it did not show the significant changes after MK-801 treatment. These results showed that antipsychotic drug, such as olanzapine, may alter the gene expression patterns, which were accompanied by MK-801-induced psychosis. Our results also provide us high-density DNA microarray technology could be potential approaches to find the candidate molecules for the therapeutics and also for the early diagnosis of psychiatric diseases.

프마이크로어레이 데이터의 유전자 집합 및 대사 경로 분석 (Gene Set and Pathway Analysis of Microarray Data)

  • 김선영
    • 유전체소식지
    • /
    • 제6권1호
    • /
    • pp.29-33
    • /
    • 2006
  • Gene set analysis is a new concept and method. to analyze and interpret microarray gene expression data and tries to extract biological meaning from gene expression data at gene set level rather than at gene level. Compared with methods which select a few tens or hundreds of genes before gene ontology and pathway analysis, gene set analysis identifies important gene ontology terms and pathways more consistently and performs well even in gene expression data sets with minimal or moderate gene expression changes. Moreover, gene set analysis is useful for comparing multiple gene expression data sets dealing with similar biological questions. This review briefly summarizes the rationale behind the gene set analysis and introduces several algorithms and tools now available for gene set analysis.

  • PDF

Gene Expression Profiles of Dibutyl Phthalate and 17$\beta$-Estradiol using cDNA microarray in MCF 7 Human Breast Cancer Cell Line

  • Ryu, Jae-Chun;Kim, Hyung-Tae;Kim, Youn-Jung
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권4호
    • /
    • pp.274-278
    • /
    • 2002
  • Phthalates, suspected endocrine disruptor, are plasticizer and solvent used in industry, and some phthalates are known as potential carcinogen. Most common human exposure to this compounds may occur with contaminated food. It may migrate into food from plastic wrap or may enter food from general environmental contamination, and it has become widespread environmental pollutants, thus leading to a variety of phthalates that possibly threaten the public health. Dibutyl phthalate (DBP) may playa part of cell proliferator, which mediates changes in gene expression and the metabolism of xenobiotics. An understanding of the role of DBP in modulating gene regulation should provide insight regarding mechanisms of DBP induced xenoestrogenic impact. To elucidate the type of genes that are associated with estrogenic activity induced by DBP at the dose (10$^{-8}$ M) appeared proliferating effects, the pattern of gene expression in MCF7 cells was compared between 17$\beta$-estradiol and DBP exposure in the cDNA microarray. From the results, it showed some differences of gene expression patterns between MCF7 cells treated with 17$\beta$-estradiol and DBP, and also DBP shows estrogenic potential with changes in estrogen-related gene expression levels.

  • PDF

Baicalin을 처리한 HL-60 백혈병 세포주에서 대규모 유전자 분석 발현 연구 (Studies on Gene Expression of baicalin treated in HL-60 cell line using High-throughput Gene Expression Analysis Techniques)

  • 김봉주;차민호;전병훈;윤용갑;윤유식
    • 동의생리병리학회지
    • /
    • 제18권5호
    • /
    • pp.1291-1300
    • /
    • 2004
  • Baicalin, a biologically active flavonoid form the roots of Scutallaria baicalensis (Skullcap), have been reported to not only function as anti-oxidants but also cause anticancer effect. We investigated the mechanism of baicalin-induced cytotoxicity and the macro scale gene expression analysis in leukemia cell line, HL-60 cells. Baicalin (10 μM) were used to treat the cells for 6h, 12h, 24h, 48h and 72h. In a human cDNAchip study of 65,000 genes evaluated 6, 12, 24, 48. 72 hours after treated with Baicalin in HL-60 cells. Hierarchical cluster against the genes which showed expression changes by more than two fold. One hundred one genes were grouped into 6 clusters according to their profile of expression by a hierarchical clustering algorithm. For genes differentially expressed in response to baicalin treatment, we tested functional classes based on Gene Ontology (GO) terms. This study provides the most comprehensive available survey of gene expression changes in response to baicalin treatment in HL-60 cell line.

Gene Expression Analysis of Rat Liver Epithelial Cells in Response to Thioacetamide

  • Park, Joon-Suk;Yeom, Hye-Jung;Jung, Jin-Wook;Hwang, Seung-Yong;Lee, Yong-Soon;Kang, Kyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.203-208
    • /
    • 2005
  • Thioacetamide (TA) is potent haptotoxincant that requires metabolic activation by mixed-function oxidases. Micrcarray technology, which is massive parallel gene expression profiling in a single hybridization experiment, has provided as a powerful molecular genetic tool for biological system related toxicant. In this study we focus on the use of toxicogenomics for the determination of gene expression analysis associated with hepatotoxicity in rat liver epithelial cell line WB-F344 (WB). The WB cells was used to assess the toxic effects of TA. WB cells were exposed to two concentrations of TA-doses which caused 20% and 50% cell death were chosen and the cells exposed for periods of 2 and 24 h. Our data revealed that following the 2-h exposure at the both of doses and 24-h exposure at the low doses, few changes in gene expression were detected. However, after 24-h exposure of the cells to the high concentration, multiple changes in gene expression were observed. TA treatment gave rise predominantly to up-regulation of genes involved in cell cycle and cell death, but down-regulation of genes involves in cell adhesion and calcium ion binding. Exposure of WB cells to higher doses of the TA gave rise to more changes in gene expression at lower exposure times. These results show that TA regulates expression of numerous genes via direct molecular signaling mechanisms in liver cells.

Age-dependent Changes of Differential Gene Expression Profile in Backfat Tissue between Hybrids and Parents in Pigs

  • Ren, ZH.Q.;Xiong, Yuanzhu;Deng, CH.Y.;Zuo, B.;Liu, Y.G.;Lei, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권5호
    • /
    • pp.682-685
    • /
    • 2005
  • Large White, an introduced European pig breed, and Meishan, a Chinese indigenous pig breed, were hybridized directly and reciprocally and a total of 260 pigs, including purebreds, Large White and Meishan, and their hybrids, White${\times}$Meishan (LM) and Meishan${\times}$Large White (ML) pigs, were bred in our laboratory. The mRNA differential display PCR (DD-PCR) was used to detect the age-dependent changes of differential gene expression in backfat tissue between hybrids and parents. Some measures were taken to reduce the false positives in our experiment. Among the total of 2,686 bands obtained, 1,952 bands (about 72.67%) were reproducible and eight patterns (fifteen kinds) of gene expression were observed. The percentage of differentially expressed genes between hybrids and parents is 56.86% at the age of four months and 57.71% at the age of six months. This indicated that the differences of gene expression between hybrids and their parents were very obvious. U-test was used to compare the patterns of gene expression between the age of four and six months, and results showed that bands occurring in only one hybrid and bands displayed in one hybrid and one parent were significantly different at p<0.05, and bands visualized in only two hybrids were significantly different at p<0.01. These indicated that differential gene expression between hybrids and parents changed at different ages.

아세트아미노펜에 의해 간손상이 유발된 랫드의 유전자 발현 분석 (Gene Expression Analysis of Acetaminophen-induced Liver Toxicity in Rat)

  • 정희경
    • Toxicological Research
    • /
    • 제22권4호
    • /
    • pp.323-328
    • /
    • 2006
  • Global gene expression profile was analyzed by microarray analysis of rat liver RNA after acute acetaminophen (APAP) administration. A single dose of 1g/kg body weight of APAP was given orally, and the liver samples were obtained after 24, 48 h, and 2 weeks. Histopathologic and biochemical studies enabled the classification of the APAP effect into injury (24 and 48 h) and regeneration (2 weeks) stages. The expression levels of 4900 clones on a custom rat gene microarray were analyzed and 484 clones were differentially expressed with more than a 1.625-fold difference(which equals 0.7 in log2 scale) at one or more time points. Two hundred ninety seven clones were classified as injury-specific clones, while 149 clones as regeneration-specific ones. Characteristic gene expression profiles could be associated with APAP-induced gene expression changes in lipid metabolism, stress response, and protein metabolism. We established a global gene expression profile utilizing microarray analysis in rat liver upon acute APAP administration with a full chronological profile that not only covers injury stage but also later point of regeneration stage.