• Title/Summary/Keyword: Gene characterization

Search Result 2,030, Processing Time 0.049 seconds

Genetic Characterization of Molecular Targets in Korean Patients with Gastrointestinal Stromal Tumors

  • Park, Joonhong;Yoo, Han Mo;Sul, Hae Jung;Shin, Soyoung;Lee, Seung Woo;Kim, Jeong Goo
    • Journal of Gastric Cancer
    • /
    • v.20 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • Purpose: Gastrointestinal stromal tumors (GISTs) frequently harbor activating gene mutations in either KIT or platelet-derived growth factor receptor A (PDGFRA) and are highly responsive to several selective tyrosine kinase inhibitors. In this study, a targeted next-generation sequencing (NGS) assay with an Oncomine Focus Assay (OFA) panel was used for the genetic characterization of molecular targets in 30 Korean patients with GIST. Materials and Methods: Using the OFA that enables rapid and simultaneous detection of hotspots, single nucleotide variants (SNVs), insertion and deletions (Indels), copy number variants (CNVs), and gene fusions across 52 genes relevant to solid tumors, targeted NGS was performed using genomic DNA extracted from formalin-fixed and paraffin-embedded samples of 30 GISTs. Results: Forty-three hotspot/other likely pathogenic variants (33 SNVs, 8 Indels, and 2 amplifications) in 16 genes were identified in 26 of the 30 GISTs. KIT variants were most frequent (44%, 19/43), followed by 6 variants in PIK3CA, 3 in PDGFRA, 2 each in JAK1 and EGFR, and 1 each in AKT1, ALK, CCND1, CTNNB1, FGFR3, FGFR4, GNA11, GNAQ, JAK3, MET, and SMO. Based on the mutation types, majority of the variants carried missense mutations (60%, 26/43), followed by 8 frameshifts, 6 nonsense, 1 stop-loss, and 2 amplifications. Conclusions: Our study confirmed the advantage of using targeted NGS with a cancer gene panel to efficiently identify mutations associated with GISTs. These findings may provide a molecular genetic basis for developing new drugs targeting these gene mutations for GIST therapy.

CND41, a DNA-binding protein in chloroplast nucleoid, and its function

  • Sato, Fumihiko;Murakami, Shinya;Chatani, Hiroshi;Nakano, Takeshi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.51-56
    • /
    • 1999
  • Plastids, which are organelles unique to plant cells, bear their own genome that is organized into DNA-protein complexes (nucleoids). Regulation of gene expression in the plastid has been extensively investigated because this organelle plays an important role in photosynthesis. Few attempts, however, have been made to characterize the regulation of plastid gene expression at the chromosomal structure, using plastid nucleoids. In this report, we summarize the recent progress in the characterization of DNA-binding proteins in plastids, with special emphasis on CND41, a DNA binding protein, which we recently identified in the choloroplast nucleoids from photomixotrophically cultured tobacco cells. CND41 is a protein of 502 amino acids which consisted of a transit peptide of 120 amino acids and a mature protein of 382 amino acids. The N-terminal of the 'mature' protein has lysine-rich region which is essential for DNA-binding. CNA41 also showed significant identities to some aspartyl proteases. Protease activity of purified CND41 has been recently confirmed and characterized. On the other hand, characterization of accumulation of CND41 both in wild type and transgenic tobacco with reduced amount of CND41 suggests that CND41 is a negative regulator in chloroplast gene expression. Further investigation indicated that gene expression of CND41 is cell-specifically and developmentally regulated as well as sugar-induced expression. The reduction of CND41 expression in transgenic tobacco also brought the stunted plant growth due to the reduced cell length in stem. GA3 treatment on apical meristem reversed the dwarf phenotype in the transformants. Effects of CND41 expression on GA biosynthesis will be discussed.

  • PDF

In Vivo Characterization of Phosphotransferase-Encoding Genes istP and forP as Interchangeable Launchers of the C3',4'-Dideoxygenation Biosynthetic Pathway of 1,4-Diaminocyclitol Antibiotics

  • Nguyen, Lan Huong;Lee, Na Joon;Hwang, Hyun Ha;Son, Hye Bin;Kim, Hye Ji;Seo, Eun Gyo;Nguyen, Huu Hoang;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.367-372
    • /
    • 2019
  • Deactivation of aminoglycosides by their modifying enzymes, including a number of aminoglycoside O-phosphotransferases, is the most ubiquitous resistance mechanism in aminoglycoside-resistant pathogens. Nonetheless, in a couple of biosynthetic pathways for gentamicins, fortimicins, and istamycins, phosphorylation of aminoglycosides seems to be a unique and initial step for the creation of a natural defensive structural feature such as a 3',4'-dideoxy scaffold. Our aim was to elucidate the biochemical details on the beginning of these C3',4'-dideoxygenation biosynthetic steps for aminoglycosides. The biosynthesis of istamycins must surely involve these 3',4'-didehydroxylation steps, but much less has been reported in terms of characterization of istamycin biosynthetic genes, especially about the phosphotransferase-encoding gene. In the disruption and complementation experiments pointing to a putative gene, istP, in the genome of wild-type Streptomyces tenjimariensis, the function of the istP gene was proved here to be a phosphotransferase. Next, an in-frame deletion of a known phosphotransferase-encoding gene forP from the genome of wild-type Micromonospora olivasterospora resulted in the appearance of a hitherto unidentified fortimicin shunt product, namely 3-O-methyl-FOR-KK1, whereas complementation of forP restored the natural fortimicin metabolite profiles. The bilateral complementation of an istP gene (or forP) in the ${\Delta}forP$ mutant (or ${\Delta}istP$ mutant strain) successfully restored the biosynthesis of 3',4'-dideoxy fortimicins and istamycins, thus clearly indicating that they are interchangeable launchers of the biosynthesis of 3',4'-dideoxy types of 1,4-diaminocyclitol antibiotics.

Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4

  • Suleiman D Allison;Nur AdeelaYasid;Fairolniza Mohd Shariff; Nor'Aini Abdul Rahman
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.436-456
    • /
    • 2024
  • Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80℃. In addition, the enzyme showed a half-life of 15 h at 80℃, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.