• Title/Summary/Keyword: Gene bank

Search Result 511, Processing Time 0.023 seconds

Virus Resistant and Susceptible Transgenic Nicotiana benthamiana Plants Expressing Coat Protein Gene of Zucchini green mottle mosaic virus for LMO Safety Assessment

  • Kim, Min-Jea;Choi, Sun-Hee;Kim, Tae-Sung;Park, Min-Hye;Lim, Hee-Rae;Oh, Kyung-Hee;Kim, Tae-San;Lee, Min-Hyo;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.206-211
    • /
    • 2004
  • Transgenic Nicotiana benthamiana plants harboring coat protein (CP) gene of Zucchini green mottle mosaic virus (ZGMMV) were generated for virus-resistant screening and complementation analysis of related viruses for environmental safety assessment (SA) of living modified organism (LMO) purposes. Transformation of leaf disc of N.benthamiana was performed by using Agrobacterium-mediated method and the pZGC-PPGA748 containing the ZGMMV CP and NPTII genes. Two kinds of transgenic homozygous groups, virus-resistant and virus-susceptible N.benthamiana lines, were obtained by screening of challenging homologous virus for Tl generations. These two pathologically different lines can be useful for host-virus interactions and LMO environmental SA.

Isolation and Characterization of Malate Dehydrogenase Gene from Panax ginseng C.A. Meyer (고려인삼에서 Malate Dehydrogenase 유전자의 분리 및 분석)

  • Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;Jung, Dae-Young;In, Jun-Gyo;Lee, Bum-Soo;Min, Byung-Hoon;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • Malate dehydrogenase is a ubiquitous enzyme in plants, involving in a range of metabolic processes depending on its subcellular location. A malate dehydrogenase (PgMDH) cDNA was isolated and characterized from the root of Panax ginseng C. A. Meyer. The deduced amino acid sequence of PgMDH showed high similarity with the NAD-dependent mitochondrial malate dehydrogenase from Glycinemax (P17783), Eucalyptus gunnii (P46487), and Lycopersicon esculentum (AAU29198). And the segment of a malate dehydrogenase gene was amplified through RT-PCR. The expression of PgMDH was increased after treatments of chilling, salt, UV, cadmium or copper treatment.

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

  • Mathiyalagan, Ramya;Subramaniyam, Sathiyamoorthy;Natarajan, Sathishkumar;Kim, Yeon Ju;Sun, Myung Suk;Kim, Se Young;Kim, Yu-Jin;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.227-247
    • /
    • 2013
  • MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.

Transformation of Fuji Apple Plant Harboring the Coat Protein Gene of Cucumber mosaic virus

  • Lee, C.H.;Hyung, N.I.;Lee, G.P.;Choi, J.Y.;Kim, C.S.;Choi, S.H.;Jang, I.O.;Han, D.H.;Ryu, K.H.
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.162-165
    • /
    • 2003
  • Transformation of Fuji apple (Malus domestica 'Fuji') was performed using Agrobacterium tumefaciens harboring a coat protein (CP) gene of Cucumber mosaic virus (CMV). A plasmid DNA containing the virus CP and NPT II genes was introduced into the loaves of apple by th e Agrobacterium - mediated transformation procedure. Regenerated transformants of the apple were obtained by kanamycin resistance conferred by the introduced NPT II gene. PCR analysis showed that 3 out of 20 putatively selected R0 plant lines contain the CMV-CP gene. Nine putative transgenic lines out of 20 lines were investigated with the PCR analysis; 5 regenerants produced a 450 bp DNA band and 3 regenerants showed a 671 bp DNA band for the NPT II and CMV-CP genes, respectively. Southern hybyidization results demonstrate the successful integration of the CMV-CP gene into the genome of the apple. This is the first report on the generation of useful vius resistance source of transgenic apple for molecular breeding program.

Phylogenetic Analysis of Sorangium cellulosum Strains Based on Cellulase Gene Sequences (Cellulase 유전자 염기서열에 기초한 Sorangium cellulosum 균주들의 계통분류)

  • Lee, Han-Bit;Youn, Jin-Kwon;Cho, Kyung-Yun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.20-28
    • /
    • 2011
  • Phylogenetic analysis of two cellulase genes, xynB1 and bglA2, and the groEL1 gene from 34 Sorangium cellulosum strains isolated in Korea suggested that there are at least five subgroups in S. cellulosum, which is the most proficient producer of secondary metabolites among myxobacteria. This analysis also revealed diversity among the isolated S. cellulosum. It appeared that at least 30 out of 34 strains are different each other.

Isolation of Sorangium cellulosum Carrying Epothilone Gene Clusters

  • Hyun, Hye-Sook;Chung, Jin-Woo;Kim, Ji-Hoon;Lee, Jong-Suk;Kwon, Byoung-Mog;Son, Kwang-Hee;Cho, Kyung-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1416-1422
    • /
    • 2008
  • Epothilone and its analogs are a potent new class of anticancer compounds produced by myxobacteria. Thus, in an effort to identify new myxobacterial strains producing epothilone and its analogs, cellulose-degrading myxobacteria were isolated from Korean soils, and 13 strains carrying epothilone biosynthetic gene homologs were screened using a polymerase chain reaction. A migration assay revealed that Sorangium cellulosum KYC3013, 3016, 3017, and 3018 all produced microtubule-stabilizing compounds, and an LC-MS/MS analysis showed that S. cellulosum KYC3013 synthesized epothilone A.

Virus-resistant and susceptible transgenic Nicotiana benthamiana plants expressing coat protein gene of Zochini green mottle mosaic virus for LMO safety assessment

  • Park, M.H.;B.E. Min;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.146.1-146
    • /
    • 2003
  • Transgenic Nicotiana benthmiana plants harboring and expressing coat protein (CP) gene of Zucchini green mottle mosaic virus (ZGMMV) were generated for both virus-resistant screening and complementation analysis of related viruses and environmental safety assessment (SA) of living modified organism (LMO) purposes. Transformation of leaf disc of N. benthamiana was performed using Agrobacterium-mediated method and the pZGCPPGA748 containing the ZGMMV CP and NPTII genes. Two kinds of transgenic homozygous groups, virus-resistant and -susceptible lines, were obtained by screening of challenging homologous virus for T1 generations. Complementation of CP-deficient related virus was analyzed using the susceptible line of ZGMMV. These two pathologically different lines can be useful for host-virus interactions and LMO environmental SA.

  • PDF

Conservation of the Epothilone-Biosynthetic Genes in Sorangium cellulosum Strains (Sorangium cellulosum 균주들의 에포틸론 생합성 유전자 보존)

  • Hyun, Hye-Sook;Youn, Jin-Kwon;Cho, Kung-Yun
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.170-173
    • /
    • 2011
  • The epothilone biosynthetic gene cluster (epoA~F, epoK) of Sorangium cellulosum KYC3013, an epothilone producing myxobacterium isolated in Korea, was cloned. When the amino acid sequences of the encoded proteins were compared with those from S. cellulosum SMP44, S. cellulosum So ce90, and S. cellulosum So0157-2, which were isolated in other continents or country, the proteins from different strains were 97.4-99.8% identical each other. This suggested that the epothilone-biosynthetic gene clusters are well conserved in S. cellulosum strains.

Morphologic and Molecular Characterization of Psoroptes ovis from Pet Rabbits in South Korea

  • Md Ashraful Islam;Obaidul Islam;Md Sodrul Islam;Sungryong Kim;Mohammed Mebarek Bia;Seongjun Choe;Ki–Jeong Na
    • Journal of Veterinary Clinics
    • /
    • v.41 no.2
    • /
    • pp.88-94
    • /
    • 2024
  • Pet rabbits are affected by the highly contagious ectoparasite Psoroptes (P.) ovis, which carries significant economic implications for the global rabbit industry. Accurate identification of the mite species remains essential to implement effective treatment and control strategies. Two approximately one-year-old female pet rabbits were admitted to the Veterinary Teaching Hospital of Chungbuk National University due to excessive scratching of the ears and the presence of waxy debris within the ear canals. Mites were isolated from the waxy debris extracted from the ear canals and subsequently identified as Psoroptes spp. through microscopic examination. Species confirmation was achieved through mitochondrial cytochrome c oxidase subunit 1 (cox1) gene analysis. The analysis revealed the mites to be P. ovis based on cox1 gene sequences. The deposited GenBank accession numbers for these sequences are OR985022 and OR985023. This represents the first report of mitochondrial cox1 gene sequences of P. ovis isolated from pet rabbits in South Korea.

Molecular Cloning and Characterization of the Gene Encoding Cinnamyl Alcohol Dehydrogenase in Panax ginseng C.A. Meyer (고려인삼으로부터 Cinnamyl Alcohol Dehydrogenase 유전자의 분리 및 특성)

  • Pulla, Rama Krishna;Shim, Ju-Sun;Kim, Yu-Jin;Jeong, Dae-Young;In, Jun-Gyo;Lee, Beom-Soo;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.4
    • /
    • pp.266-272
    • /
    • 2009
  • Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.95), catalyzes the reduction of hydroxycinnamaldehydes to give hydroxycinnamyl alcohols, or "monolignols," the monomeric precursors of lignin. Lignins are important components of cell walls and lignified secondary cell walls play crucial roles in long distance transport of water and nutrients during plant growth and development and in plant defense against biotic and abiotic stresses. Here a cDNA clone containing a CAD gene, named as PgCAD, was isolated from a commercial medicinal plant Panax ginseng. PgCAD is predicted to encode a precursor protein of 177 amino acid residues, and its sequence shares high homology with a number of other plant CADS. The expression of PgCAD in adventitious roots and hairy roots of P. ginseng was analyzed using reverse transcriptase (RT)-PCR under various abiotic stresses such as salt, salicylic acid, wounding and chilling treatment that triggered a significant induction of PgCAD at different time points within 2-48 h post-treatment. This study revealed that PgCAD may help the plants to survive against various abiotic stresses.