• Title/Summary/Keyword: Gene and cell therapy

Search Result 457, Processing Time 0.028 seconds

The Effect of miR-361-3p Targeting TRAF6 on Apoptosis of Multiple Myeloma Cells

  • Fan, Zhen;Wu, Zhiwei;Yang, Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.197-206
    • /
    • 2021
  • microRNA-361-3p (miR-361-3p) is involved in the carcinogenesis of oral cancer and pancreatic catheter adenocarcinoma, and has anti-carcinogenic effects on non-small cell lung cancer (NSCLC). However, its effect on multiple myeloma (MM) is less reported. Here, we found that upregulating the expression of miR-361-3p inhibited MM cell viability and promoted MM apoptosis. We measured expressions of tumor necrosis factor receptor-associated factor 6 (TRAF6) and miR-361-3p in MM cells and detected the viability, colony formation rate, and apoptosis of MM cells. In addition, we measured expressions of apoptosis-related genes Bcl-2, Bax, and Cleaved caspase-3 (C caspase-3). The binding site between miR-361-3p and TRAF6 was predicted by TargetScan. Our results showed that miR-361-3p was low expressed in the plasma of MM patients and cell lines, while its overexpression inhibited viability and colony formation of MM cells and increased the cell apoptosis. Furthermore, TRAF6, which was predicted to be a target gene of miR-361-3p, was high-expressed in the plasma of patients and cell lines with MM. Rescue experiments demonstrated that the effect of TRAF6 on MM cells was opposite to that of miR-361-3p. Upregulation of miR-361-3p induced apoptosis and inhibited the proliferation of MM cells through targeting TRAF6, suggesting that miR-361-3p might be a potential target for MM therapy.

Antiproliferative Effects of Free and Encapsulated Hypericum Perforatum L. Extract and Its Potential Interaction with Doxorubicin for Esophageal Squamous Cell Carcinoma

  • Amjadi, Issa;Mohajeri, Mohammad;Borisov, Andrei;Hosseini, Motahare-Sadat
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2019
  • Objectives: Esophageal squamous cell carcinoma (ESCC) is considered as a deadly medical condition that affects a growing number of people worldwide. Targeted therapy of ESCC has been suggested recently and required extensive research. With cyclin D1 as a therapeutic target, the present study aimed at evaluating the anticancer effects of doxorubicin (Dox) or Hypericum perforatum L. (HP) extract encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles on the ESCC cell line KYSE30. Methods: Nanoparticles were prepared using double emulsion method. Cytotoxicity assay was carried out to measure the anti-proliferation activity of Dox-loaded (Dox NPs) and HP-loaded nanoparticles (HP NPs) against both cancer and normal cell lines. The mRNA gene expression of cyclin D1 was evaluated to validate the cytotoxicity studies at molecular level. Results: Free drugs and nanoparticles significantly inhibited KYSE30 cells by 55-73% and slightly affected normal cells up to 29%. The IC50 of Dox NPs and HP NPs was ~ 0.04-0.06 mg/mL and ~ 0.6-0.7 mg/mL, respectively. Significant decrease occurred in cyclin D1 expression by Dox NPs and HP NPs (P < 0.05). Exposure of KYSE-30 cells to combined treatments including both Dox and HP extract significantly increased the level of cyclin D1 expression as compared to those with individual treatments (P < 0.05). Conclusion: Dox NPs and HP NPs can successfully and specifically target ESCC cells through downregulation of cyclin D1. The simultaneous use of Dox and HP extract should be avoided for the treatment of ESCC.

Cancer/Testis OIP5 and TAF7L Genes are Up-Regulated in Breast Cancer

  • Mobasheri, Maryam Beigom;Shirkoohi, Reza;Modarressi, Mohammad Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4623-4628
    • /
    • 2015
  • Breast cancer still remains as the most frequent cancer with second mortality rate in women worldwide. There are no validated biomarkers for detection of the disease in early stages with effective power in diagnosis and therapeutic approaches. Cancer/testis antigens are recently promising tumor antigens and suitable candidates for targeted therapies and generating cancer vaccines. We conducted the present study to analyze transcript changes of two cancer/testis antigens, OIP5 and TAF7L, in breast tumors and cell lines in comparison with normal breast tissues by quantitative real time RT-PCR for the first time. Significant over-expression of OIP5 was observed in breast tumors and three out of six cell lines including MDA-MB-468, T47D and SKBR3. Not significant expression of TAF7L was evident in breast tumors but significant increase was noted in three out of six cell lines including MDA-MB-231, BT474 and T47D. OIP5 has ssignificant role in chromatin organization and cell cycle control during cell cycle exit and normal chromosome segregation during mitosis and TAF7L is a component of the transcription factor IID, which is involved in transcription initiation of most protein coding genes. TAF7Lis located at X chromosome and belongs to the CT-X gene family of cancer/testis antigens which contains about 50% of CT antigens, including those which have been used in cancer immunotherapy.

Analysis of the Effects of Red Ginseng Ingredient-based 'SSR' in Decreasing Fatigue and Inducing Changes in Blood Composition through a Clinical Trial (인체적용시험을 통한 홍삼기반 'SSR'이 인체 피로도 감소 및 혈액성분 변화에 미치는 영향분석)

  • Shin, Keong Sub;Lee, Hong Gi;Park, Sun Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.2
    • /
    • pp.196-206
    • /
    • 2021
  • The main purpose of this study was to examine the correlation between the consumption of red ginseng-based 'SSR' for 30 days and the reduction in human fatigue, blood component changes, and immune cell activity in 35 human subjects. 'SSR' is composed of zinc oxide, folic acid, and D-α-tocopherol with red ginseng as the main component. According to the protocol criteria of the study, 35 subjects who understood the purpose of the study and signed an informed consent form were selected. The fatigue survey was conducted through a questionnaire, and after taking 'SSR', a decreased tendency of physical, mental, and neurosensory fatigue was observed. In hematological analysis, no significant changes were observed in the levels of WBC, RBC, and hemoglobin; however, AST (SGOT) and ALT (SGPT) levels were statistically significantly decreased. In immunological analysis, it was observed that the proliferative effect of T cells (CD3+CD4+) was greater than that of NK cells (CD16+CD56+). The collected data were subjected to t-test analysis using the SPSS 25.0 statistical program. The result from this study proposes that 'SSR' can be used as a functional food material as it reduces human fatigue and enhances immune function.

Paris polyphylla Smith Extract Induces Apoptosis and Activates Cancer Suppressor Gene Connexin26 Expression

  • Li, Fu-Rong;Jiao, Peng;Yao, Shu-Tong;Sang, Hui;Qin, Shu-Cun;Zhang, Wei;Zhang, Ya-Bin;Gao, Lin-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.205-209
    • /
    • 2012
  • Background: The inhibition of tumor cell growth without toxicity to normal cells is an important target in cancer therapy. One possible way to increase the efficacy of anticancer drugs and to decrease toxicity or side effects is to develop traditional natural products, especially from medicinal plants. Paris polyphylla Smith has shown anti-tumour effects by inhibition of tumor promotion and inducement of tumor cell apoptosis, but mechanisms are still not well understood. The present study was to explore the effect of Paris polyphylla Smith extract (PPSE) on connexin26 and growth control in human esophageal cancer ECA109 cells. Methods: The effects of PPSE on Connexin26 were examined by RT-PCR, western blot and immunofluorescence; cell growth and proliferation were examined by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. Results: PPSE inhibited the growth and proliferation on esophageal cancer ECA109 cells, while increasing the expression of connexin26 mRNA and protein; conversely, PPSE decreased Bcl-2 and increased Bad. Conclusion: This study firstly shows that PPSE can increase connexin26 expression at mRNA and protein level, exerting anti-tumour effects on esophageal cacner ECA109 cells via inhibiting cell proliferation and inducing cell apoptosis.

Long Non-coding RNAs and Drug Resistance

  • Pan, Jing-Jing;Xie, Xiao-Juan;Li, Xu;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8067-8073
    • /
    • 2016
  • Background: Long non-coding RNAs (lncRNAs) are emerging as key players in gene expression that govern cell developmental processes, and thus contributing to diseases, especially cancers. Many studies have suggested that aberrant expression of lncRNAs is responsible for drug resistance, a substantial obstacle for cancer therapy. Drug resistance not only results from individual variations in patients, but also from genetic and epigenetic differences in tumors. It is reported that drug resistance is tightly modulated by lncRNAs which change the stability and translation of mRNAs encoding factors involved in cell survival, proliferation, and drug metabolism. In this review, we summarize recent advances in research on lncRNAs associated with drug resistance and underlying molecular or cellular mechanisms, which may contribute helpful approaches for the development of new therapeutic strategies to overcome treatment failure.

The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis

  • Devkota, Sushil
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.437-443
    • /
    • 2018
  • Non-homologous end joining (NHEJ), and to a lesser extent, the error-free pathway known as homology-directed repair (HDR) are cellular mechanisms for recovery from double-strand DNA breaks (DSB) induced by RNA-guided programmable nuclease CRISPR/Cas. Since NHEJ is equivalent to using a duck tape to stick two pieces of metals together, the outcome of this repair mechanism is prone to error. Any out-of-frame mutations or premature stop codons resulting from NHEJ repair mechanism are extremely handy for loss-of-function studies. Substitution of a mutation on the genome with the correct exogenous repair DNA requires coordination via an error-free HDR, for targeted transgenesis. However, several practical limitations exist in harnessing the potential of HDR to replace a faulty mutation for therapeutic purposes in all cell types and more so in somatic cells. In germ cells after the DSB, copying occurs from the homologous chromosome, which increases the chances of incorporation of exogenous DNA with some degree of homology into the genome compared with somatic cells where copying from the identical sister chromatid is always preferred. This review summarizes several strategies that have been implemented to increase the frequency of HDR with a focus on somatic cells. It also highlights the limitations of this technology in gene therapy and suggests specific solutions to circumvent those barriers.

Cytotoxicity of Cytosine Deaminase (CD) Adenoviral Vectors(AV) with a Promoter (L-plastin) for Epithelial Cancer Cells.

  • Chung, Injae;Jung, Kihwa;Deisseroth, Albert B.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.80-80
    • /
    • 1997
  • The object of this study was to develop a gene therapy strategy for ovarian cancer. We have previously shown that AV with a L-plastin (LP) promoter infects breast and ovarian cancer cells and expressed ${\beta}$-galactosidase cDNA in preference to normal fibroblast cells and hematopoietic cells. We now report on the cytotoxicity of Ad.LP.CD, an AV carrying a CD cDNA which converts the pro-drug, 5-Fluorocytosine (5-FC) into the toxic drug 5-Fluorouracil (5-FU). Infection of Ad.LP.CD into either 293 cells or ovarian cancer cells generated the functional CD as measured by HPLC analysis. Using a ratio of AV to OVCAR3 cell of 100 and a 5-FC concentration of 100 ${\mu}$M, we achieve an over 95 % of cell growth inhibition. We are using flow cytometry analysis for ${\beta}$ -galactosidase and ovarian cancer associated folate receptor to screen primary ascites samples for infectivity after infection with an adenoviral vector, i.e., Ad.LP.LacZ. This vector system may be of value in the treatment of microscopic disease of ovarian cancer in the peritoneal cavity.

  • PDF

Evaluation of Estrogenic Activity of Extract from the Herbal Mixture Cynanchum wilfordii Hemsley, Phlomis umbrosa Turczaninow, and Angelica gigas Nakai

  • Kim, Se Jong;Jin, Sun Woo;Lee, Gi-Ho;Kim, Yong An;Jeong, Hye Gwang
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.71-77
    • /
    • 2017
  • Hormone replacement therapy (HRT) consists of highly effective prescription medications for treating menopausal symptoms; however, these agents have exhibited side effects including the risk of estrogen-induced carcinogenesis. Therefore, interest in phytotherapy-based materials as a natural source of alternatives to estrogen therapy has increased. However, some of these herbal medicines have been reported to increase the risk of estrogen-induced cancer. Herbal formulations composed of a combination of Cynanchum wilfordii Hemsley (CW), Phlomis umbrosa Turczaninow (PU), and Angelica gigas Nakai (AG) extracts (CPAE) have been used for treating menopausal symptoms. Therefore, in this study, we aimed to examine the safety of CPAE by determining its potential adverse estrogenic activity using the Organization for Economic Cooperation and Development (OECD) test guideline 455 (TG455) in a stably transfected transcriptionally activated human estrogen receptor ${\alpha}$ ($hER{\alpha}$)-HeLa9903 cell model. We found that CPAE did not how any estrogenic activity or stimulate promoters containing estrogen response elements in MCF-7 cells. In addition, CPAE showed no significant selective activity against $hER{\alpha}$ and $hER{\beta}$, non-selective activity against the ER, or effects on ER target gene expression. Furthermore, CPAE did not significantly induce MCF-7 cell proliferation and uterine weight increase in ovariectomized rats. These results demonstrate that CPAE can be used as beneficial herbal drug for prevention and therapeutic intervention of estrogen carcinogenesis in menopausal women.

Evaluation of MiR-34 Family and DNA Methyltransferases 1, 3A, 3B Gene Expression Levels in Hepatocellular Carcinoma Following Treatment with Dendrosomal Nanocurcumin

  • Chamani, Fatemeh;Sadeghizadeh, Majid;Masoumi, Mahbobeh;Babashah, Sadegh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.219-224
    • /
    • 2016
  • Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver making up more than 80 percent of cases. It is known to be the sixth most prevalent cancer and the third most frequent cause of cancer related death worldwide. Epigenetic regulation constitutes an important mechanism by which dietary components can selectively activate or inactivate target gene expression. The miR-34 family members including mir-34a, mir-34b and mir-34c are tumor suppressor micro RNAs, which are expressed in the majority of normal tissues. Several studies have indicated silencing of miR-34 expression via DNA methylation in multiple types of cancers. Bioactive nutrients like curcumin (Cur) have excellent anticarcinogenic activity and minimal toxic manifestations in biological systems. This compound has recently been determined to induce epigenetic changes. However, Cur is lipophilic and has a poor systemic bioavailability and poor absorption. Its bioavailability is increased through employing dendrosome nanoparticles. The aim of the current study was to investigate the effect of dendrosomal nanocurcumin (DNC) on expression of mir-34 family members in two HCC cell lines, HepG2 and Huh7. We performed the MTT assay to evaluate DNC and dendrosome effects on cell viability. The ability of DNC to alter expression of the mir-34 family and DNA methyltransferases (DNMT1, DNMT3A and 3B) was evaluated using semi-quantitative and quantitative PCR. We observed the entrance of DNC into HepG2 and Huh7 cells. Gene expression assays indicated that DNC treatment upregulated mir34a, mir34b and mir34c expression (P<0.05) as well as downregulated DNMT1, DNMT3A and DNMT3B expression (P<0.05) in both HepG2 and Huh7 cell lines. DNC also reduced viability of Huh7 and HepG2 cells through restoration of miR-34s expression. We showed that DNC could awaken the epigenetically silenced miR-34 family by downregulation of DNMTs. Our findings suggest that DNC has potential in epigenetic therapy of HCC.