• Title/Summary/Keyword: Gene Transcription

Search Result 2,161, Processing Time 0.051 seconds

Effects of FIS Protein on rnpB Transcription in Escherichia coli

  • Choi, Hyun-Sook;Kim, Kwang-sun;Park, Jeong Won;Jung, Young Hwan;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.239-245
    • /
    • 2005
  • Factor for inversion stimulation (FIS), the Escherichia coli protein, is a positive regulator of the transcription of genes that encode stable RNA species, such as rRNA and tRNA. Transcription of the rnpB gene encoding M1 RNA, the catalytic subunit of E. coli RNase P, rapidly declines under stringent conditions, as does that of other stable RNAs. There are multiple putative FIS binding sites upstream of the rnpB promoter. We tested whether FIS binds to these sites, and if so, how it affects rnpB transcription. In vitro binding assays revealed specific binding of FIS to multiple sites in the rnpB promoter region. Interestingly, FIS bound not only to the upstream region of the promoter, but also to the region from +4 to +18. FIS activated rnpB transcription in vitro, but the level of activation was much lower than that of the rrnB promoter for rRNA. We also examined the effects of FIS on rnpB transcription in vivo using isogenic $fis^+$ and $fis^-$ strains. rnpB transcription was higher in the $fis^-$ than the $fis^+$ cells during the transitions from lag to exponential phase, and from exponential to stationary phase.

Role of T7 phage lysozyme affected sequence-specific transcription termination by T7 RNA polymerase (염기서열 특이적 전사종결에 영향을 주는 T7 파아지 lysozyme의 역할)

  • Kim, Dong-Hee;Lee, Sang-Soo
    • The Journal of Natural Sciences
    • /
    • v.14 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • T7 RNA polymerase is a single subunit RNA polymerase able to accomplish whole transcription process without auxiliary factors. T7 phage lysozyme involcing in destruction of host cell wall repress T7 transcription and affects transcription termination process. Therefore expression vector pT7lys containing T7 phage lysozyme gene was constructed and expressed. T7 phage lysozyme protein was purified to homogeneity by Ni-NTA column chromatography. Also amidase activity of the purified lysozyme was identified. In order to understand the effect of the lysozyme on the sequence specific transcription termination. T7 transcription elongation complexes at the site rrnB T1 transcription termination signal were made in the presence the lysozyme. The results shows that the transcription elongation complexes are unstable in the presence of T7 phage lysozyme.

  • PDF

Optimization of Reference Genes for Normalization of the Quantitative Polymerase Chain Reaction in Tissue Samples of Gastric Cancer

  • Zhao, Lian-Mei;Zheng, Zhao-Xu;Zhao, Xiwa;Shi, Juan;Bi, Jian-Jun;Pei, Wei;Feng, Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5815-5818
    • /
    • 2014
  • For an exact comparison of mRNA transcription in different samples or tissues with real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), it is crucial to select a suitable internal reference gene. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin (ACTB) have been frequently considered as house-keeping genes to normalize for changes in specific gene expression. However, it has been reported that these genes are unsuitable references in some cases, because their transcription is significantly variable under particular experimental conditions and among tissues. The present study was aimed to investigate which reference genes are most suitable for the study of gastric cancer tissues using qRT-PCR. 50 pairs of gastric cancer and corresponding peritumoral tissues were obtained from patients with gastric cancer. Absolute qRT-PCR was employed to detect the expression of GAPDH, ACTB, RPII and 18sRNA in the gastric cancer samples. Comparing gastric cancer with corresponding peritumoral tissues, GAPDH, ACTB and RPII were obviously upregulated 6.49, 5.0 and 3.68 fold, respectively. Yet 18sRNA had no obvious expression change in gastric cancer tissues and the corresponding peritumoral tissues. The expression of GAPDH, ${\beta}$-actin, RPII and 18sRNA showed no obvious changes in normal gastric epithelial cells compared with gastric cancer cell lines. The carcinoembryonic antigen (CEA), a widely used clinical tumor marker, was used as a validation gene. Only when 18sRNA was used as the normalizing gene was CEA obviously elevated in gastric cancer tissues compared with peritumoral tissues. Our data show that 18sRNA is stably expressed in gastric cancer samples and corresponding peritumoral tissues. These observations confirm that there is no universal reference gene and underline the importance of specific optimization of potential reference genes for any experimental condition.

Effects of Inhibitors on the Function and Activity of Topoisomerase, and Gene Expression in HL-60 Human Leukemia Cells (HL-60 세포의 유전자 발현 및 topoisomerase의 기능 활성에 미치는 억제제의 영향)

  • Jeong, In-Cheol;Cho, Moo-Youn;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2008
  • This studies were designed to elucidate whether inhibitors of topoisomerase regulate function and activity of topoisomerase, and gene expression in HL-60 human leukemia cells. HL-60 cells were treated with 10-hydroxycamptothecin or doxorubicin, total RNA was isolated, and expressed genes were investigated with human oligonucleotide microarray containing 10K gene, respectively. Expression profiles of the human leukemia HL-60 cells treated with 10-hydroxycamptothecin (10-CIT) or doxorubicin associated with signal transduction,. cell adhesion, cell cycle, cell growth, cell proliferation, cell differentiation, transcription and immune response, especially genes related with transcription and cell growth. In HL-60 cells treated with 10-CPT, the expression of topoisomerase III${\alpha}$, III${\beta}$ and I gene from oligo chip microarray analysis were increased over, but the expression of topoisomerase II${\alpha}$ and II${\beta}$ gene were decreased over. In contrast, the expression of topoisomerase II${\alpha}$ and II${\beta}$ gene were increased over in HL-60 cells treated with doxorubicin, whereas the expression of topoisomerase III${\alpha}$ and III${\beta}$ mRNA remained no significant change. These results suggest that these data may be useful for novel therapeutic markers.

Alternative Isoforms of the mi Transcription Factor (MITF) Regulate the Expression of mMCP-6 in the Connective Tissue-Type Mast Cells Cultured with Stem Cell Factor (SCF에서 배양한 결합조직형 비만세포에서 mMCP-6 발현을 조절하는 MITF 이형체)

  • Lee, Sun-Hee;Guan, Xiu-Ying;Kim, Dae-Ki
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1348-1354
    • /
    • 2008
  • mi transcription factor (MITF) is important in regulating the differentiation of mast cells. In particular, MITF regulates the transcription of the mouse mast cell-specific serine protease (mMCP)-6 gene, which is generally expressed by the connective tissue-type of mast cells. In this study, we investigated alternative isoforms of MITF that regulate transcription of the mMCP-6 gene in bone marrow-derived cultured mast cells in mice. The expression of MITF isoforms was examined by RT-PCR. We observed that MITF-A, -E, -H and -Mc were expressed by mucosal-type mast cells cultured in the presence of IL-3, whereas the connective tissue-type mast cells cultured in the presence of stem cell factor (SCF) expressed MITF-A. Overexpression of MITF isoforms increased luciferase activity through the mMCP-6 promoter in NIH-3T3 cells and elevated the level of mMCP-6 expression in the MC/9 mast cell line. Moreover, mMCP-6 expression in mast cells was significantly inhibited by the depletion of MITF. The transcriptional activity and DNA binding of MITF-A was comparable to that of MITF isoforms, including MITF-E, -H, and -Mc. Our results therefore suggest that MITF-A may be an important isoform of MITF in regulating the transcription of mMCP-6 in mouse connective tissue mast cells.

Molecular Cloning and Expression of Forkhead Transcription Factor O1 Gene from Pig Sus scrofa

  • Pang, Weijun;Sun, Shiduo;Bai, Liang;Yang, Gongshe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.499-509
    • /
    • 2008
  • Foxo1 plays an important role in the integration of hormone-activated signaling pathways with the complex transcriptional cascade that promotes preadipocyte differentiation of clonal cell lines from rodents. We isolated the full-length cDNA of porcine FoxO1 gene using RACE, confirmed by visual Northern blotting. The deduced amino acids indicated 94% and 90% identities with the corresponding human and mice aa. Analysis of the aa sequence, showed that it included a Forkhead domain (aa 167-247), a transmembrane structure domain (aa 90-113), a LXXLL motif (aa 469-473), and 51 Ser, 8 Thr, and 4 Tyr phosphorylation sites, indicating a potential important role for FoxO1 transcriptional activity in vivo. Using the IMpRH panel, we mapped FoxO1 gene to chromosome 11p13. Our data provide basic molecular information useful for the further investigation on the function of FoxO1 gene. Time-course analysis of FoxO1 expressions indicated that levels of mRNA and protein gradually increased from day 0 to 3, and it reached almost maximal level at day 3, then decreased from day 5 to 7 in porcine primary preadipocyte differentiation. After induction by IGF-1, GPDH activity and accumulation of lipid increased, however, expressions of FoxO1 mRNA and protein were inhibited in a dose dependent manner. These results suggest that FoxO1 takes part in porcine preadipocyte differentiation and expressions of FoxO1 were regulated by IGF-1.

Uridylate kinase as a New Phylogenetic Molecule for Procaryotes

  • Lee, Dong-Geun;Lee, Jin-Ok;Lee, Jae-Hwa
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.810-814
    • /
    • 2003
  • For the phylogenetic analysis of procaryotes, 16S rRNA gene has been used. In spite of it's common use, so high conservative of 16S rRNA gene limited resolving power, hence other molecule was applied in this study and the result was compared with that of 16S rRNA. COG (Clusters of Orthologous of protein) algorithm revealed that three COGs were only detected in 42 procaryotes ; transcription elongation factor (COG0195), bacterial DNA primase (COG0358) and uridylate kinase (COG0528). Uridylate kinase gene was selected owing to the similarity and one single copy number in each genome. Phylogenetic tree of 16S rRNA gene and uridylate kinase showed similarities and differences. Uridylate kinase may help the problem of very high conservative of 16S rRNA gene in rhylogenetic analysis and it would help to access more accurate discrimination and phylogenetic analysis of bacteria.

  • PDF

Optimal Expression System for Production of Recombinant Neoagarobiose Hydrolyase in Saccharomyces cerevisiae (출아효모에서 재조합 neoagarobiose hydrolyase의 생산을 위한 최적 발현시스템)

  • Jung, Hye-Won;Kim, Yeon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.662-666
    • /
    • 2019
  • In this study, the NABH558 gene expression system was constructed to efficiently produce neoagarobiose hydrolase (NABH) in Saccharomyces cerevisiae strain. The ADH1 and GAL10 promoters of the pAMFα-NABH and pGMFα-NABH plasmids were examined to determine the suitable promoter for the NABH558 gene expression, respectively. The effect of promoter and carbon sources on NABH558 gene expression was investigated by transforming each plasmid into the S. cerevisiae 2805 strain. The NABH activity in the 2805/pAMFα-NABH strain was 0.069 unit/ml/DCW in YPD medium, whereas that in the 2805/pGMFα-NABH strain was similar (0.02-0.027 unit/ml/DCW) irrespective of the medium composition. The higher NABH activity in the YPD medium was due to the increased NABH558 gene transcription. NABH produced in the recombinant strains could degrade agarose to galactose and AHG. This indicated that ADH1 promoter was a more optimal promoter for the expression of NABH558 gene than the GAL10 promoter. The NABH activity induced by the ADH1 promoter was about 3-fold higher than that induced by the GAL10 promoter.

Caffeic Acid Phenethyl Ester Inhibits the PKC-Induced IL-6 Gene Expression in the Synoviocytes of Rheumatoid Arthritis Patients

  • Hur, Gang-Min;Hwang, Yin-Bang;Lee, Jae-Heun;Bae, So-Hyun;Park, Ji-Sun;Lee, Choong-Jae;Seok, Jeong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.363-368
    • /
    • 2003
  • To gain insight on the role of pro-inflammatory cytokines in the pathogenesis and treatment of rheumatoid arthritis (RA), the phorbol 12-myristate 13-acetate (PMA)-induced IL-6 gene expression and the effect of caffeic acid phenethyl ester (CAPE) on the PMA-induced IL-6 gene expression were investigated in human fibroblast-like synoviocytes (FLSs). Synovial tissue samples were obtained from rheumatoid arthritis patients, and FLSs were isolated. The cells were stimulated with PMA (100 nM) for 6 hrs to induce IL-6 gene. The cells were pretreated with CAPE (20, 50, $100{\mu}M$) prior to PMA treatment. PMA increased IL-6 RNA expression, binding activities of transcription factors ($NF-{\kappa}B$, AP-1) to IL-6 promoter, and IL-6 promoter activity. However, CAPE inhibited PMA-induced IL-6 mRNA expression in dose-dependent manner, and also inhibited the increased binding activities of transcription factors to IL-6 promoter and IL-6 promoter activity. These results suggest that CAPE might regulate PKC-mediated IL-6 expression and inflammatory reactions in RA.

Zinc modulation of osterix in MC3T3-E1 cells

  • Seo, Hyun-Ju;Jeong, Jin Boo;Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.53 no.4
    • /
    • pp.347-355
    • /
    • 2020
  • Purpose: Zinc is known to be associated with osteoblast proliferation and differentiation. Osterix as zinc-finger transcription factor is also related to osteoblast differentiation and bone formation. In the present study, we aimed to investigate whether zinc modulates osterix gene and protein expression in osteoblastic MC3T3-E1 cells. Methods: MC3T3-E1 cells were cultured in zinc-dependent concentrations (0, 0.5, 1, 5, or 15 µM Zn), along with osteogenic control (normal osteogenic medium) for 1 and 3 days. The gene and protein expression levels of osterix were analyzed by real-time reverse transcription polymerase chain reaction and Western blotting, respectively. Results: Zinc increased osteoblast proliferation in a concentration-dependent manner at day 1 and 3. Similarly, zinc increased the activity of osteoblast marker enzyme alkaline phosphatase in cells and media in a zinc concentration-dependent manner. Moreover, our results showed that the pattern of osterix gene expression by zinc was down-regulated within the low levels of zinc treatments (0.5-1 µM) at day 1, but it was up-regulated after extended culture period at day 3. Osterix protein expression by zinc showed the similar pattern of gene expression, which down-regulated by low zinc levels at day 1 and up-regulated back at day 3 as the early stage of osteoblast differentiation. Conclusion: Our results suggest that zinc modulates osterix gene and protein expression in osteoblasts, particularly in low level of zinc at early stage of osteoblast differentiation period.