• Title/Summary/Keyword: Gene Targeting

Search Result 474, Processing Time 0.026 seconds

Lentivirus-mediated shRNA Interference Targeting SLUG Inhibits Lung Cancer Growth and Metastasis

  • Wang, Yao-Peng;Wang, Ming-Zhao;Luo, Yi-Ren;Shen, Yi;Wei, Zhao-Xia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4947-4951
    • /
    • 2012
  • Objective: Lung cancer is a deadly cancer, whose kills more people worldwide than any other malignancy. SLUG (SNAI2, Snail2) is involved in the epithelial mesenchymal transition in physiological and in pathological contexts and is implicated in the development and progression of lung cancer. Methods: We constructed a lentivirus vector with SLUG shRNA (LV-shSLUG). LV-shSLUG and a control lentivirus were infected into the non-small cell lung cancer cell A549 and real-time PCR, Western blot and IHC were applied to assess expression of the SLUG gene. Cell proliferation and migration were detected using MTT and clony formation methods. Results: Real-time PCR, Western Blot and IHC results confirmed down-regulation of SLUG expression by its shRNA by about 80%~90% at both the mRNA and protein levels. Knockdown of SLUG significantly suppressed lung cancer cell proliferation. Furthermore, knockdown of SLUG significantly inhibited lung cancer cell invasion and metastasis. Finally, knockdown of SLUG induced the down-regulation of Bcl-2 and up-regulation of E-cadherin. Conclusion: These results indicate that SLUG is a newly identified gene associated with lung cancer growth and metastasis. SLUG may serve as a new therapeutic target for the treatment of lung cancer in the future.

Detection of Ocular Toxoplasma gondii Infection in Chronic Irregular Recurrent Uveitis by PCR

  • Lee, Sang-Eun;Hong, Sung-Hee;Lee, Seong-Ho;Jeong, Young-Il;Lim, Su-Jin;Kwon, Oh-Woong;Kim, Sun-Hyun;You, Young-Sung;Cho, Shin-Hyeong;Lee, Won-Ja
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.3
    • /
    • pp.229-231
    • /
    • 2012
  • Toxoplasma gondii is a zoonotic parasite resulting in human infections and one of the infectious pathogens leading to uveitis and retinochoroiditis. The present study was performed to assess T. gondii infection in 20 ocular patients with chronic irregular recurrent uveitis (20 aqueous humor and 20 peripheral blood samples) using PCR. All samples were analyzed by nested PCR targeting a specific B1 gene of T. gondii. The PCR-positive rate was 25% (5/20), including 5% (1) in blood samples, 25% (5) in aqueous humor samples, and 5% (1) in both sample types. A molecular screening test for T. gondii infection in ocular patients with common clinical findings of an unclear retinal margin and an inflammatory membrane over the retina, as seen by fundus examination, may be helpful for early diagnosis and treatment.

Targeting Nrf2-Mediated Gene Transcription by Triterpenoids and Their Derivatives

  • Loboda, Agnieszka;Rojczyk-Golebiewska, Ewa;Bednarczyk-Cwynar, Barbara;Zaprutko, Lucjusz;Jozkowicz, Alicja;Dulak, Jozef
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • Chemoprevention represents a strategy designed to protect cells or tissues against various carcinogens and carcinogenic metabolites derived from exogenous or endogenous sources. Recent studies indicate that plant-derived triterpenoids, like oleanolic acid, may exert cytoprotective functions via regulation of the activity of different transcription factors. The chemopreventive effects may be mediated through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Activation of Nrf2 by triterpenoids induces the expression of phase 2 detoxifying and antioxidant enzymes such as NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) - proteins which can protect cells or tissues against various toxic metabolites. On the other hand, inhibition of other transcription factors, like NF-${\kappa}B$ leads to the decrease in the pro-inflammatory gene expression. Moreover, the modulation of microRNAs activity may constitute a new mechanism responsible for valuable effects of triterpenoids. Recently, based on the structure of naturally occurring triterpenoids and with involvement of bioinformatics and computational chemistry, many synthetic analogs with improved biological properties have been obtained. Data from in vitro and in vivo experiments strongly suggest synthetic derivatives as promising candidates in the chemopreventive and chemotherapeutic strategies.

Loop-Mediated Isothermal Amplification Assay Targeting the femA Gene for Rapid Detection of Staphylococcus aureus from Clinical and Food Samples

  • Zhao, Xihong;Li, Yanmei;Park, Myoungsu;Wang, Jun;Zhang, Youhong;He, Xiaowei;Forghani, Fereidoun;Wang, Li;Yu, Guangchao;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.246-250
    • /
    • 2013
  • In this study, a loop-mediated isothermal amplification (LAMP) method to rapidly detect Staphylococcus aureus strains was developed and evaluated by extensively applying a large number of S. aureus isolates from clinical and food samples. Six primers were specially designed for recognizing eight distinct sequences on the species-specific femA gene of S. aureus. The detection limits were 100 fg DNA/tube and $10^4$ CFU/ml. The LAMP assay was applied to 432 S. aureus strains isolated from 118 clinical and 314 food samples. Total detection rates for the LAMP and polymerase chain reaction assays were 98.4% (306/311) and 89.4% (278/311), respectively.

Characterization of microbiota diversity of engorged ticks collected from dogs in China

  • Wang, Seongjin;Hua, Xiuguo;Cui, Li
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.37.1-37.14
    • /
    • 2021
  • Background: Ticks are one of the most common external parasites in dogs, and are associated with the transmission of a number of major zoonoses, which result in serious harm to human health and even death. Also, the increasing number of pet dogs and pet owners in China has caused concern regarding human tick-borne illnesses. Accordingly, studies are needed to gain a complete understanding of the bacterial composition and diversity of the ticks that parasitize dogs. Objectives: To date, there have been relatively few reports on the analysis of the bacterial community structure and diversity in ticks that parasitize dogs. The objective of this study was to investigate the microbial composition and diversity of parasitic ticks of dogs, and assessed the effect of tick sex and geographical region on the bacterial composition in two tick genera collected from dogs in China. Methods: A total of 178 whole ticks were subjected to a 16S ribosomal RNA (rRNA) next generation sequencing analysis. The Illumina MiSeq platform targeting the V3-V4 region of the 16S rRNA gene was used to characterize the bacterial communities of the collected ticks. Sequence analysis and taxonomic assignment were performed using QIIME 2 and the GreenGene database, respectively. After clustering the sequences into taxonomic units, the sequences were quality-filtered and rarefied. Results: After pooling 24 tick samples, we identified a total of 2,081 operational taxonomic units, which were assigned to 23 phyla and 328 genera, revealing a diverse bacterial community profile. The high, moderate and low prevalent taxa include 46, 101, and 182 genera, respectively. Among them, dominant taxa include environmental bacterial genera, such as Psychrobacter and Burkholderia. Additionally, some known tick-associated endosymbionts were also detected, including Coxiella, Rickettsia, and Ricketssiella. Also, the potentially pathogenic genera Staphylococcus and Pseudomonas were detected in the tick pools. Moreover, our preliminary study found that the differences in microbial communities are more dependent on the sampling location than tick sex in the tick specimens collected from dogs. Conclusions: The findings of this study support the need for future research on the microbial population present in ticks collected from dogs in China.

Comparison of clinical diagnostic performance between commercial RRT-LAMP and RT-qPCR assays for SARS-CoV-2 detection

  • Kim, Hye-Ryung;Park, Jonghyun;Han, Hyung-Soo;Kim, Yu-Kyung;Jeon, Hyo-Sung;Park, Seung-Chun;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.3
    • /
    • pp.163-168
    • /
    • 2021
  • The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in isolating infected patients and preventing further viral transmission. In this study, we evaluated the clinical diagnostic performances of a commercial real-time reverse transcription loop-mediated isothermal amplification (RRT-LAMP) assay (Isopollo® COVID-2 assay, M-monitor, Daegu, Korea) using eighty COVID-19 suspected clinical samples and compared these with the results of a commercial real-time reverse transcription polymerase chain reaction (RT-qPCR) assay (AllplexTM 2019-nCoV rRT-QPCR Assay, SeeGene, Seoul, Korea). The results of the RRT-LAMP assay targeting the N or RdRp gene of SARS-CoV-2 showed perfect agreement with the RT-qPCR assay results in terms of detection. Furthermore, the RRT-LAMP assay was completed in just within a 20-min reaction time, which is significantly faster than about the 2 h currently required for the RT-qPCR assay, thus enabling prompt decision making regarding the isolation of infected patients. The RRT-LAMP assay will be a valuable tool for rapid, sensitive, and specific detection of SARS-CoV-2 in human or unexpected animal clinical cases.

Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota

  • Zhang, Xiaoyan;Chen, Sha;Duan, Feipeng;Liu, An;Li, Shaojing;Zhong, Wen;Sheng, Wei;Chen, Jun;Xu, Jiang;Xiao, Shuiming
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.334-343
    • /
    • 2021
  • Background: Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods: Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results: The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion: These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.

Rapid Detection of Clostridium tetani by Recombinase Polymerase Amplification Using an Exo Probe

  • Guo, Mingjing;Feng, Pan;Zhang, Liqun;Feng, Chunfeng;Fu, Jie;Pu, Xiaoyun;Liu, Fei
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • Tetanus is a potentially fatal public health illness resulted from the neurotoxins generated by Clostridium tetani. C. tetani is not easily culturable and culturing the relevant bacteria from infected wounds has rarely been useful in diagnosis; PCR-based assays can only be conducted at highly sophisticated laboratories. Therefore, a real-time recombinase polymerase amplification assay (Exo-RPA) was constructed to identify the fragments of the neurotoxin gene of C. tetani. Primers and the exo probe targeting the conserved region were designed, and the resulting amplicons could be detected in less than 20 min, with a detection limit of 20 copies/reaction. The RPA assay displayed good selectivity, and there were no cross-reactions with other infectious bacteria common in penetrating wounds. Tests of target-spiked serum and pus extract revealed that RPA is robust to interfering factors and has great potential for further development for biological sample analysis. This method has been confirmed to be reliable for discriminating between toxic and nontoxic C. tetani strains. The RPA assay dramatically improves the diagnostic efficacy with simplified device architecture and is a promising alternative to real-time PCR for tetanus detection.

Hsa_Circ_0001947/MiR-661/DOK7 Axis Restrains Non-Small Cell Lung Cancer Development

  • Bao, Yuyan;Yu, Yanjie;Hong, Bing;Lin, Zhenjian;Qi, Guoli;Zhou, Jie;Liu, Kaiping;Zhang, Xiaomin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1508-1518
    • /
    • 2021
  • Hsa_circ_0001947 is associated with multiple cancers, but its function in non-small cell lung cancer (NSCLC) is ambiguous and needs further research. The targeting relationship among circ_0001947, miR-661, and downstream of tyrosine kinase 7 (DOK7) was predicted by database and further verified by dual-luciferase reporter assay, while their expressions in cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). After transfection, cell biological behaviors and expressions of miRNAs, miR-661 and DOK7 were determined by cell function experiments and qRT-PCR, respectively. Circ_0001947 was low-expressed in NSCLC tissues and cells. Circ_0001947 knockdown intensified cell viability and proliferation, induced cell cycle arrest at S phase, suppressed apoptosis and evidently enhanced miR-510, miR-587, miR-661 and miR-942 levels, while circ_0001947 overexpression did the opposite. MiR-661 was a target gene of circ_0001947 that participated in the regulation of circ_0001947 on cell biological behaviors. Furthermore, DOK7, the target gene of miR-661, partly participated in the regulation of miR-661 on cell viability. Hsa_circ_0001947 acts as a sponge of miR-661 to repress NSCLC development by elevating the expression of DOK7.

Identification and Validation of Novel Biomarkers and Potential Targeted Drugs in Cholangiocarcinoma: Bioinformatics, Virtual Screening, and Biological Evaluation

  • Wang, Jiena;Zhu, Weiwei;Tu, Junxue;Zheng, Yihui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1262-1274
    • /
    • 2022
  • Cholangiocarcinoma (CCA) is a complex and refractor type of cancer with global prevalence. Several barriers remain in CCA diagnosis, treatment, and prognosis. Therefore, exploring more biomarkers and therapeutic drugs for CCA management is necessary. CCA gene expression data was downloaded from the TCGA and GEO databases. KEGG enrichment, GO analysis, and protein-protein interaction network were used for hub gene identification. miRNA were predicted using Targetscan and validated according to several GEO databases. The relative RNA and miRNA expression levels and prognostic information were obtained from the GEPIA. The candidate drug was screened using pharmacophore-based virtual screening and validated by molecular modeling and through several in vitro studies. 301 differentially expressed genes (DEGs) were screened out. Complement and coagulation cascades-related genes (including AHSG, F2, TTR, and KNG1), and cell cycle-related genes (including CDK1, CCNB1, and KIAA0101) were considered as the hub genes in CCA progression. AHSG, F2, TTR, and KNG1 were found to be significantly decreased and the eight predicted miRNA targeting AHSG, F2, and TTR were increased in CCA patients. CDK1, CCNB1, and KIAA0101 were found to be significantly abundant in CCA patients. In addition, Molport-003-703-800, which is a compound that is derived from pharmacophores-based virtual screening, could directly bind to CDK1 and exhibited anti-tumor activity in cholangiocarcinoma cells. AHSG, F2, TTR, and KNG1 could be novel biomarkers for CCA. Molport-003-703-800 targets CDK1 and work as potential cell cycle inhibitors, thereby having potential for consideration for new chemotherapeutics for CCA.