• Title/Summary/Keyword: Gene Screening

Search Result 792, Processing Time 0.026 seconds

Transcriptome analysis, microsatellite marker information, and orthologous analysis of Capsicum annuum varieties

  • Ahn, Yul-Kyun;Karna, Sandeep;Kim, Jeong-Ho;Lee, Hye-Eun;Kim, Jin-Hee;Kim, Do-Sun
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.311-316
    • /
    • 2016
  • The efficacy of plant breeding has been enhanced by application of molecular markers in population screening and selection. Pepper (Capsicum annuum L.) is a major staple crop that is economically important with worldwide distribution. It is valued for its spicy taste and medicinal effect. The aim of this study was to discover single nucleotide polymorphisms (SNPs), microsatellite markers information, and percentage sharing through orthologous analysis of pepper-specific pungency-related genes. Here, we report the results of transcriptome analysis and microsatellite markers for four pepper varieties that possess a pungency-related gene. Orthologous analyses was performed to identify species-specific pungency-related genes in pepper, Arabidopsis thaliana L., potato (Solanum tuberosum L.), and tomato (Solanum lycopersicum L.). Advancements in next-generation sequencing technologies enabled us to quickly and cost-effectively assemble and characterize genes to select molecular markers in various organisms, including pepper. We identified a total of 9762, 7302, 8596, and 6886 SNPs for the four pepper cultivars Blackcluster, Mandarine, Saengryeg 211, and Saengryeg 213, respectively. We used 454 GS-FLX pyrosequencing to identify microsatellite markers and tri-nucleotide repeats (54.4%), the most common repeats, followed by di-, hexa-, tetra-, and penta-nucleotide repeats. A total of 5156 (15.9%) pepper-specific pungency-related genes were discovered as a result of orthologous analysis.

Detection of Ref-1 (Redox factor-1) Interacting Protein Using the Yeast Two-hybrid System (Yeast two-hybrid system을 이용한 Ref-1 (redox factor-1) 결합 단백질의 분리 및 동정)

  • 이수복;김규원;배문경;배명호;정주원;안미영;김영진
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.26-31
    • /
    • 2004
  • Redox factor-1 (Ref-1), known as a redox regulator, controls the DNA binding of AP-1 and is activated in HT29 colon cancer cells by hypoxia in vitro. REF-1 also increases tile DNA binding affinity of Hypoxia-inducible Factor-lalpha$ (HIF-lalpha$), HIF-like Factor (HLF) and early growth response-1 (Egr-1) which induce expression of the genes involved in angiogenesis, so that we speculate that REF-1 may play a role in hypoxia-induced angiogenesis. In this research we tried to detect novel proteins interacting with REF-1 using Yeast two-hybrid system using full-length REF-1 cDNA as bait. As result of such screening we detected 3 positive clones. DNA sequencing and GeneBank search revealed that one of the clones contained the same sequences as M.musculus cDNA for tioredoxin.

Molecular Cloning and Characterization of Sesquiterpene Cyclase cDNAs from Pepper Plant Infected with Phytophthora capsici

  • Kim, Jong-Bum;Lee, Sung-Gon;Ha, Sun-Hwa;Lee, Myung-Chul;Ye, Wan-Hye;Lee, Jang-Yong;Lee, Shin-Woo;Kim, Jung-Bong;Cho, Kang-Jin;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • Pepper plants (Nogkwang, 60-day old) were inoculated with Phytophthora capsici to induce sesquiterpene cyclase associated with the biosynthesis of phytoalexin (capsidiol), a substance related to the defense against pathogens in plants. One day after inoculation, mRNA was isolated from the root, cDNA synthesized, and a library constructed in a ZAP express XR vector. The efficiency was $2{\times}10^6pfu/{\mu}g$. Sesquiterpene cyclase cDNA from Hyoscyamus muticus was labeled with $^{32}P$ and used as a probe for screening the cDNA library. After the third screening, 25 positive clones were selected. Through restrictive digestion and DNA gel-blot analysis, six different cyclase gene expressions were identified. PSC1B sequences of the six clones were determined, which were 1966 base pairs encoded 556 amino acids with an expected molecular weight of 63.8 kDa. Response against the pathogen was different between the resistant and susceptible peppers. After the infection of the pathogen, the expression of PSC genes continued in the resistant peppers while the plants were alive. The expression in the susceptible peppers lasted for only 4 days.

  • PDF

Invertebrate Models Used for Characterization of Drug Dependence and Development of Anti-Drug Dependent Agents

  • Chang Hyun-Sook;Kim Ha-Won;Lee Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Drug dependence deals a heavy socioeconomic burden to the society. For adolescents, the damage from drug dependence is greater than adults considering their higher susceptibility to drug effect and increasing chance for violence leading to criminal punishment process. Habitual drug use depends on genetic and environmental factors and the complex interactions between the two. Mammalian model systems have been useful in understanding the neurochemical and cellular impacts of abused drugs on specific regions of the brain, and in identifying the molecular targets of drugs. More elucidation is required whether biological effects of drugs actually cause the habitual dependence at the cellular level. Although there is much insight available on the nature of drug abuse problems, none of the systems designed to help drug dependent individuals is efficient in screening functional ingredients of the drug, and thus resulting in the failure of helping drug dependent individuals recover from drug dependence. Alternative model systems draw the attention of researchers, such as the invertebrate model systems of nematodes (Caenorhabditis elegans) and fruit flies (Drosophila melanogaster). These models should provide new insight into the mechanisms leading to the behavior of drug users (even functional studies analyzing molecular mechanism), and screening useful components to help remove drug dependence among drug users. The relatively simple anatomy and gene expression of the invertebrate model systems should enable researchers to coordinate current knowledge on drug abuse. Furthermore, the invertebrate model systems should facilitate advance in experiments on the susceptibility of specific genetic backgrounds and the interaction between genetic factors to drug dependence.

Genotoxicity Study on Khal, a Halocidin Derivative, in Bacterial and Mammalian Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyoung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.151-158
    • /
    • 2006
  • Khal was a synthetic congener of halocidin, a heterodimeric peptide consisting of 19 and 15 amino acid residues detected in Halocynthia aurantium. This compound was considered a candidate for the development of a novel peptide antibiotic. The genotoxicity of Khal was subjected to high throughput toxicity screening (HTTS) because they revealed strong antibacterial effects. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay and chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of Khal was determined the concentration of $25.51\;{\mu}/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, Khal was not induced DNA damage in mouse lymphoma cell line. Also, the mutation frequencies in the Khal-treated cultures were similar to the vehicle controls. It is suggests that Khal is non-mutagenic in MOLY assay. And no clastogenicity was observed in Khal-treated Chinese hamster lung cells. The results of this battery of assays indicate that Khal has no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that Khal, as the optimal candidates with both no genotoxic potential and antibacterial effects must be chosen.

Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms

  • Kim, Mi Yeon;Kim, Changman;Moon, Jungheun;Heo, Jinhee;Jung, Sokhee P.;Kim, Jung Rae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.342-349
    • /
    • 2017
  • Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.

Isolation and Characterization of Some Promoter Sequences from Leuconostoc mesenteroides SY2 Isolated from Kimchi

  • Park, Ji Yeong;Jeong, Seon-Ju;Kim, Jeong A;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1586-1592
    • /
    • 2017
  • Some promoters were isolated and characterized from the genome of Leuconostoc mesenteroides SY2, an isolate from kimchi, a Korean traditional fermented vegetable. Chromosomal DNA of L. mesenteroides SY2 was digested with Sau3AI and ligated with BamHI-cut pBV5030, a promoter screening vector containing a promoterless cat-86. Among E. coli transformants (TFs) resistant against Cm (chloramphenicol), 17 were able to grow in the presence of $1,000{\mu}g/ml$ Cm and their inserts were sequenced. Transcription start sites were examined for three putative promoters (P04C, P25C, and P33C) by primer extension. Four putative promoters were inserted upstream of a promoterless ${\alpha}$-amylase reporter gene in $pJY15{\alpha}$. ${\alpha}$-Amylase activities of E. coli TFs containing $pJY15{\alpha}$ (control, no promoter), $pJY03{\alpha}$ ($pJY15{\alpha}$ with P03C), $pJY04{\alpha}$ (with P04C), $pJY25{\alpha}$ (with P25C), and $pJY33{\alpha}$ (with P33C) were 66.9, 78.7, 122.1, 70.8, and 99.3 U, respectively. Cells harboring $pJY04{\alpha}$ showed 1.8 times higher activity than the control. Some promoters characterized in this study might be useful for construction of food-grade expression vectors for Leuconostoc sp. and related lactic acid bacteria.

Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production

  • Trakarnpaiboon, Srisakul;Bunterngsook, Benjarat;Wansuksriand, Rungtiva;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1455-1464
    • /
    • 2021
  • Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40℃, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.

The Development of Expression Process Leading to Ethanol Production with Highly Active Cellulase Modified by Directed Evolution (목질계 Cellulose로부터의 Ethanol의 경제적인 생산공정을 위하여 분자진화에 의한 활성이 획기적으로 증가된 Cellulase의 대량 발현공정 개발)

  • Kang, Whan-Koo;Jeung, Jong-Sik;Kim, Hyang-Sik;Kim, Bum-Change;Yun, Ji-Sun;Park, Hyang-Su
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.16-21
    • /
    • 2007
  • Although Energy demands of modern society increase rapidly, current energy would be exhausted shortly. Therefore development of bio-ethanol production process from cellulose containing materials was extremly demanded. Therefore development of highly functional cellulase is requisite for this purpose. In this study cellobio-hydrolase (CBH1) gene from Trichorderma reesei was used to increase cellulase activity by directed evolution and highly functional cellobio-hydrolase was obtained and characterized.

Development of an In Vitro Test System Measuring Transcriptional Downregulatory Activities on IL-13

  • Choi, Jeong-June;Park, Bo-Kyung;Park, Sun-Young;Yun, Chi-Young;Kim, Dong-Hee;Kim, Jin-Sook;Hwang, Eun-Sook;Jin, Mi-Rim
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.331-337
    • /
    • 2009
  • Interleukin-13 (IL-13) has been proposed as a therapeutic target for bronchial asthma as it plays crucial roles in the pathogenesis of the disease. We developed an in vitro test system measuring transcriptional downregulatory activities on IL-13 as a primary screening method to select drug candidates from natural products. The promoter region of IL-13 (-2,048 to +1) was cloned into the upstream of a luciferase gene in the plasmid pGL4.14 containing the hygromycin resistance gene as a selection marker, generating pGL4.14-IL-13. The EL-4 thymoma and RBL-2H3 mast cells transiently expressing this plasmid highly produced the luciferase activities by responding to PI (PMA and ionomycin) stimulation up to 8-fold and 13-fold compared with the control, respectively, whereas cyclosporin A, a well-known antiasthmatic agent, significantly downregulated the activities. The BF1 clone of RBL-2H3 cells constitutively expressing pGL4.14-IL-13 was established by selecting surviving cells under a constant lethal dose of hygromycin treatment. The feasibility of this system was evaluated by measuring the downregulatory activities of 354 natural products on the IL-13 promoter using the BF1 clone. An extract from Morus bombycis (named TBRC 156) significantly inhibited PI-induced luciferase activities and IL-13 mRNA expression, but not the protein expression. Fisetin (named TBRC 353) inhibited not only PI-induced luciferase activities and mRNA expression, but also the IL-13 protein secretion, whereas myricetin (named TBRC 354) could not suppress the IL-13 expression at all. Our data indicated that this in vitro test system is able to discriminate the effects on IL-13 expression, and furthermore, that it might be suitable as a simple and time-saving primary screening system to select antiasthmatic agents by measuring transcriptional activities of the IL-13 promoter.