• Title/Summary/Keyword: Gene Screening

Search Result 792, Processing Time 0.033 seconds

Screening and Characterization of a Novel Cellulase Gene from the Gut Microflora of Hermetia illucens Using Metagenomic Library

  • Lee, Chang-Muk;Lee, Young-Seok;Seo, So-Hyeon;Yoon, Sang-Hong;Kim, Soo-Jin;Hahn, Bum-Soo;Sim, Joon-Soo;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1196-1206
    • /
    • 2014
  • A metagenomic fosmid library was constructed using genomic DNA isolated from the gut microflora of Hermetia illucens, a black soldier fly. A cellulase-positive clone, with the CS10 gene, was identified by extensive Congo-red overlay screenings for cellulase activity from the fosmid library of 92,000 clones. The CS10 gene was composed of a 996 bp DNA sequence encoding the mature protein of 331 amino acids. The deduced amino acids of CS10 showed 72% sequence identity with the glycosyl hydrolase family 5 gene of Dysgonomonas mossii, displaying no significant sequence homology to already known cellulases. The purified CS10 protein presented a single band of cellulase activity with a molecular mass of approximately 40 kDa on the SDS-PAGE gel and zymogram. The purified CS10 protein exhibited optimal activity at $50^{\circ}C$ and pH 7.0, and the thermostability and pH stability of CS10 were preserved at the ranges of $20{\sim}50^{\circ}C$ and pH 4.0~10.0. CS10 exhibited little loss of cellulase activity against various chemical reagents such as 10% polar organic solvents, 1% non-ionic detergents, and 0.5 M denaturing agents. Moreover, the substrate specificity and the product patterns by thin-layer chromatography suggested that CS10 is an endo-${\beta}$-1,4-glucanase. From these biochemical properties of CS10, it is expected that the enzyme has the potential for application in industrial processes.

Functional PstI/RsaI Polymorphisms in the CYP2E1 Gene among South Indian Populations

  • Lakkakula, Saikrishna;Maram, Rajasekhar;Munirajan, Arasambattu Kannan;Pathapati, Ram Mohan;Visweswara, Subrahmanyam Bhattaram;Lakkakula, Bhaskar V.K.S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.179-182
    • /
    • 2013
  • Human cytochrome P4502E1 (CYP2E1) is a well-conserved xenobiotic-metabolizing enzyme expressed in liver, kidney, nasal mucosa, brain, lung, and other tissues. CYP2E1 is inducible by ethanol, acetone, and other low-molecular weight substrates and may mediate development of chemically-mediated cancers. CYP2E1 polymorphisms alter the transcriptional activity of the gene. This study was conducted in order to investigate the allele frequency variation in different populations of Andhra Pradesh. Two hundred and twelve subjects belonging to six populations were studied. Genotype and allele frequency were assessed through TaqMan allelic discrimination (rs6413419) and polymerase chain reaction-sequencing (-1295G>C and -1055C>T) after DNA isolation from peripheral leukocytes. The data were compared with other available world populations. The SNP rs6413419 is monomorphic in the present study, -1295G>C and -1055C>T are less polymorphic and followed Hardy-Weinberg equilibrium in all the populations studied. The -1295G>C and -1055C>T frequencies were similar and acted as surrogates in all the populations. Analysis of HapMap populations data revealed no significant LD between these markers in all the populations. Low frequency of $CYP2E1^*c2$ could be useful in the understanding of south Indian population gene composition, alcohol metabolism, and alcoholic liver disease development. However, screening of additional populations and further association studies are necessary. The heterogeneity of Indian population as evidenced by the different distribution of $CYP2E1^*c2$ may help in understanding the population genetic and evolutionary aspects of this gene.

Factors Affecting the Efficiency of Introducing Growth Hormone Gene into Mud Loach : Gene Transfer via Electroporation (미꾸라지에 성장호르몬 유전자 이식을 위한 최적 조건 개발)

  • Kim Dong Soo;Nam Yoon Kwon
    • Journal of Aquaculture
    • /
    • v.8 no.3
    • /
    • pp.241-249
    • /
    • 1995
  • Sperm from mud loach (Misgurnus mizolepis) were electroporated in the presence of plasmid DNA, pRSV/luc or pMT/hGH over a range of field strength of 0-1,625 V/cm with capacitance from 0 to 1,000 ${\mu}F$, and the effects of electroporation on fertilization, hatching, early survival, and efficiency of gene transfer were investigated. Average fertilization rate, hatching rate and early survival rate up to yolk sac absorption of all experimental groups were not significuntly different (P>0.05). The proportion of fish carrying pRSV/luc based on the polymerase chain reaction (PCR) analysis was ranged from 0 to $20\%$, however, the values of gene transfer efficiency from the different eledctroporation conditions were not significantly different. PCR analysis of pMT/hGH transferred groups revealed that screening of pMT/hGH transferred fish by PCR was difficult because of significant nonspecific amplifications resulted from the homologous sequences in the genome of mud loach.

  • PDF

Discovering Novel Genes of poultry in Genomic Era

  • S.K. Kang;Lee, B.C.;J.M. Lim;J.Y. Han;W.S. Hwang
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.143-153
    • /
    • 2001
  • Using bioinformatic tools for searching the massive genome databases, it is possible to Identify new genes in few minutes for initial discoveries based on evolutionary conservation, domain homology, and tissue expression patterns, followed by further verification and characterization using the bench-top works. The development of high-density two-dimensional arrays has allowed the analysis of the expression of thousands of genes simultaneously in the humans, mice, rats, yeast, and bacteria to elucidate the genes and pathways involved in physiological processes. In addition, rapid and automated protein identification is being achieved by searching protein and nucleotide sequence databases directly with data generated from mass spectrometry. Recently, analysis at the bio-chemical level such as biochemical screening and metabolic profiling (Biochemical genomics) has been introduced as an additional approach for categorical assignment of gene function. To make advantage of recent achievements in computational approaches for facilitated gene discoveries in the avian model, chicken expression sequence tags (ESTs) have been reported and deposited in the international databases. By searching EST databases, a chicken heparanase gene was identified and functionally confirmed by subsequent experiments. Using combination of sub-tractive hybridization assay and Genbank database searches, a chicken heme -binding protein family (cSOUL/HBP) was isolated in the retina and pineal gland of domestic chicken and verified by Northern blot analysis. Microarrays have identified several host genes whose expression levels are elevated following infection of chicken embryo fibroblasts (CEF) with Marek's disease virus (MDV). The ongoing process of chicken genome projects and new discoveries and breakthroughs in genomics and proteomics will no doubt reveal new and exciting information and advances in the avian research.

  • PDF

Screening for Metastatic Osteosarcoma Biomarkers with a DNA Microarray

  • Diao, Chun-Yu;Guo, Hong-Bing;Ouyang, Yu-Rong;Zhang, Han-Cong;Liu, Li-Hong;Bu, Jie;Wang, Zhi-Hua;Xiao, Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1817-1822
    • /
    • 2014
  • Objective: The aim of this study was to screen for possible biomarkers of metastatic osteosarcoma (OS) using a DNA microarray. Methods: We downloaded the gene expression profile GSE49003 from Gene Expression Omnibus database, which included 6 gene chips from metastatic and 6 from non-metastatic OS patients. The R package was used to screen and identify differentially expressed genes (DEGs) between metastatic and non-metastatic OS patients. Then we compared the expression of DEGs in the two groups and sub-grouped into up-regulated and down-regulated, followed by functional enrichment analysis using the DAVID system. Subsequently, we constructed an miRNA-DEG regulatory network with the help of WebGestalt software. Results: A total of 323 DEGs, including 134 up-regulated and 189 down-regulated, were screened out. The up-regulated DEGs were enriched in 14 subcategories and most significantly in cytoskeleton organization, while the down-regulated DEGs were prevalent in 13 subcategories, especially wound healing. In addition, we identified two important miRNAs (miR-202 and miR-9) pivotal for OS metastasis, and their relevant genes, CALD1 and STX1A. Conclusions: MiR-202 and miR-9 are potential key factors affecting the metastasis of OS and CALD1 and STX1A may be possible targets beneficial for the treatment of metastatic OS. However, further experimental studies are needed to confirm our results.

Fluorometric Detection of Low-Abundance EGFR Exon 19 Deletion Mutation Using Tandem Gene Amplification

  • Kim, Dong-Min;Zhang, Shichen;Kim, Minhee;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.662-667
    • /
    • 2020
  • Epidermal growth factor receptor (EGFR) mutations are not only genetic markers for diagnosis but also biomarkers of clinical-response against tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC). Among the EGFR mutations, the in-frame deletion mutation in EGFR exon 19 kinase domain (EGFR exon 19-del) is the most frequent mutation, accounting for about 45% of EGFR mutations in NSCLCs. Development of sensitive method for detecting the EGFR mutation is highly required to make a better screening for drug-response in the treatment of NSCLC patients. Here, we developed a fluorometric tandem gene amplification assay for sensitive detection of low-abundance EGFR exon 19-del mutant genomic DNA. The method consists of pre-amplification with PCR, thermal cycling of ligation by Taq ligase, and subsequent rolling circle amplification (RCA). PCR-amplified DNA from genomic DNA samples was used as splint DNA to conjugate both ends of linear padlock DNA, generating circular padlock DNA template for RCA. Long stretches of ssDNA harboring multiple copies of G-quadruplex structure was generated in RCA and detected by thioflavin T (ThT) fluorescence, which is specifically intercalated into the G-quadruplex, emitting strong fluorescence. Sensitivity of tandem gene amplification assay for detection of the EGFR exon 19-del from gDNA was as low as 3.6 pg, and mutant gDNA present in the pooled normal plasma was readily detected as low as 1% fraction. Hence, fluorometric detection of low-abundance EGFR exon 19 deletion mutation using tandem gene amplification may be applicable to clinical diagnosis of NSCLC patients with appropriate TKI treatment.

Suppression of the ER-Localized AAA ATPase NgCDC48 Inhibits Tobacco Growth and Development

  • Bae, Hansol;Choi, Soo Min;Yang, Seong Wook;Pai, Hyun-Sook;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.57-65
    • /
    • 2009
  • CDC48 is a member of the AAA ATPase superfamily. Yeast CDC48 and its mammalian homolog p97 are implicated in diverse cellular processes, including mitosis, membrane fusion, and ubiquitin-dependent protein degradation. However, the cellular functions of plant CDC48 proteins are largely unknown. In the present study, we performed virus-induced gene silencing (VIGS) screening and found that silencing of a gene encoding a tobacco CDC48 homolog, NgCDC48, resulted in severe abnormalities in leaf and shoot development in tobacco. Furthermore, transgenic tobacco plants (35S:anti-NgCDC48), in which the NgCDC48 gene was suppressed using the antisense RNA method, exhibited severely aberrant development of both vegetative and reproductive organs, resulting in arrested shoot and leaf growth and sterile flowers. Approximately 57-83% of 35S:anti-NgCDC48 plants failed to develop mature organs and died at early stage of development. Scanning electron microscopy showed that both adaxial and abaxial epidermal pavement cells in antisense transgenic leaves were significantly smaller and more numerous than those in wild type leaves. These results indicate that NgCDC48 is critically involved in cell growth and development of tobacco plants. An in vivo targeting experiment revealed that NgCDC48 resides in the endoplasmic reticulum (ER) in tobacco protoplasts. We consider the tantalizing possibility that CDC48-mediated degradation of an as-yet unidentified protein(s) in the ER might be a critical step for cell growth and expansion in tobacco leaves.

Suppression of Matrix Metalloproteinase-9 Expression of Flavonoids from Metasequoia glyptostroboides (낙우송(Metasequoia glyptostroboides)으로부터 분리한 flavonoid의 금속단백분해효소-9 발현 억제 활성)

  • Yang Jae-Young;Lee Ho-Jae;Kho Yung-Hee;Kwon Byoung-Mok;Chun Hyo Kon
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.231-235
    • /
    • 2005
  • Matrix metalloproteinases (MMPs) are a family of structurally and functionally related zinc-dependent enzymes responsible for proteolytic degradation of extracellular matrix components such as base membrane or interstitial stroma. MMPs play an important role in a variety of physiological and pathological tissue remodeling processes, including wound healing, embryo implantation, tumor invasion and metastasis. Since MMP-9 (gelatinase B) has unique ability to cleave type IV collagen, gene expression of MMP-9 has been focused on as a pharmacological target. Flavonoids are a class of compounds that are widely spread in plants. In the coures of screening for the suppressors of MMP-9 gene expression from natural products, Metasequoia glyptostroboides was selected. Six flavonoids, sciadopitysin, isoginkgetin, bilobetin, 2,3-dihydrohinokiflavone, luteolin and apigenin were purified as suppressors of MMP-9 gene expression from M. glyptostroboides. The suppressing activity of the isolated flavinoids on the MMP-9 gene expression was measured by gelatin zymography and Nothern blot analysis.

Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation

  • Dong, Yuguo;Zhang, Jian;Xu, Rui;Lv, Xinxin;Wang, Lihua;Sun, Aiyou;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1924-1932
    • /
    • 2016
  • Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum. MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. ${\beta}-Hydroxy-{\beta}-methylglutaryl-CoA$ (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens-mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum. Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum.

Enhanced Production of Itaconic Acid through Development of Transformed Fungal Strains of Aspergillus terreus

  • Shin, Woo-Shik;Park, Boonyoung;Lee, Dohoon;Oh, Min-Kyu;Chun, Gie-Taek;Kim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.306-315
    • /
    • 2017
  • Metabolic engineering with a high-yielding mutant, A. terreus AN37, was performed to enhance the production of itaconic acid (IA). Reportedly, the gene cluster for IA biosynthesis is composed of four genes: reg (regulator), mtt (mitochondrial transporter), cad (cis-aconitate decarboxylase), and mfs (membrane transporter). By overexpressing each gene of the IA gene cluster in A. terreus AN37 transformed by the restriction enzyme-mediated integration method, several transformants showing high productivity of IA were successfully obtained. One of the AN37/cad transformants could produce a very high amount of IA (75 g/l) in shake-flask cultivations, showing an average of 5% higher IA titer compared with the high-yielding control strain. Notably, in the case of the mfs transformants, a maximal increase of 18.3% in IA production was observed relative to the control strain under the identical fermentation conditions. Meanwhile, the overexpression of reg and mtt genes showed no significant improvements in IA production. In summary, the overexpressed cis-aconitate decarboxylase (CAD) and putative membrane transporter (MFS) appeared to have positive influences on the enhanced IA productivity of the respective transformant. The maximal increases of 13.6~18.3% in IA productivity of the transformed strains should be noted, since the parallel mother strain used in this study is indeed a very high-performance mutant that has been obtained through intensive rational screening programs in our laboratory.